Cederbaum A I, Qureshi A, Cohen G
Biochem Pharmacol. 1983 Dec 1;32(23):3517-24. doi: 10.1016/0006-2952(83)90297-6.
t-Butyl alcohol is not a substrate for alcohol dehydrogenase or for the peroxidatic activity of catalase and, therefore, it is used frequently as an example of a non-metabolizable alcohol. t-Butyl alcohol is, however, a scavenger of the hydroxyl radical. The current report demonstrates that t-butyl alcohol can be oxidized to formaldehyde plus acetone by hydroxyl radicals generated from four different systems. The systems studied were: (a) two chemical systems, namely, the iron catalyzed oxidation of ascorbic acid and the Fenton reaction between H2O2 and iron; (b) an enzymatic system, the coupled oxidation of xanthine by xanthine oxidase; and (c) a membrane-bound system, NADPH-dependent microsomal electron transfer. The oxidation of t-butyl alcohol appeared to be mediated by hydroxyl radicals, or by a species with the oxidizing power of the hydroxyl radical, because the production of formaldehyde plus acetone was (a) inhibited by competing scavengers of the hydroxyl radical; (b) stimulated by the addition of iron-EDTA; and (c) inhibited by catalase. The last observation suggests that H2O2 served as the precursor of the hydroxyl radical in all three systems. A possible mechanism is hydrogen abstraction to form the alkoxyl radical [CH3)3-C-O.), spontaneous fission of the alkoxyl radical to produce acetone and the methyl radical (CH3.), interaction of the methyl radical with O2 to form the methyl peroxy radical (CH300.), and decomposition of the later to formaldehyde. These results extend the alcohol oxidizing capacity of the microsomal alcohol oxidizing system to a tertiary alcohol. Since t-butyl alcohol is not a substrate for alcohol dehydrogenase or catalase, the ability of microsomes to oxidize t-butyl alcohol lends further support for a role for hydroxyl radicals in the microsomal alcohol oxidation system. In view of the production of formaldehyde, and the reactivity as well as further metabolism of this aldehyde, caution should be used in interpreting experiments in which t-butyl alcohol is used as a presumed "non-metabolizable" alcohol. t-Butyl alcohol may be a valuable probe for the detection of hydroxyl radicals in intact cells and in vivo.
叔丁醇不是乙醇脱氢酶的底物,也不是过氧化氢酶过氧化物酶活性的底物,因此,它经常被用作不可代谢醇的一个例子。然而,叔丁醇是羟基自由基的清除剂。本报告表明,叔丁醇可被四种不同体系产生的羟基自由基氧化为甲醛和丙酮。所研究的体系有:(a) 两种化学体系,即铁催化的抗坏血酸氧化反应和H2O2与铁之间的芬顿反应;(b) 一种酶促体系,即黄嘌呤氧化酶催化的黄嘌呤偶联氧化反应;(c) 一种膜结合体系,即NADPH依赖的微粒体电子传递体系。叔丁醇的氧化似乎是由羟基自由基或具有羟基自由基氧化能力的物质介导的,因为甲醛和丙酮的生成:(a) 受到羟基自由基竞争性清除剂的抑制;(b) 因添加铁-EDTA而受到促进;(c) 受到过氧化氢酶的抑制。最后一个观察结果表明,H2O2在所有这三种体系中都是羟基自由基的前体。一种可能的机制是氢原子提取形成烷氧基自由基[(CH3)3-C-O·],烷氧基自由基自发裂变产生丙酮和甲基自由基(CH3·),甲基自由基与O2相互作用形成甲基过氧自由基(CH3OO·),随后甲基过氧自由基分解为甲醛。这些结果将微粒体醇氧化体系的醇氧化能力扩展到了叔醇。由于叔丁醇不是乙醇脱氢酶或过氧化氢酶的底物,微粒体氧化叔丁醇的能力进一步支持了羟基自由基在微粒体醇氧化体系中的作用。鉴于甲醛的产生以及该醛的反应活性和进一步代谢情况,在解释使用叔丁醇作为假定的“不可代谢”醇的实验时应谨慎。叔丁醇可能是检测完整细胞和体内羟基自由基的一种有价值的探针。