Newman E A, Odette L L
J Neurophysiol. 1984 Jan;51(1):164-82. doi: 10.1152/jn.1984.51.1.164.
Generation of the electroretinogram b-wave is simulated with a computer model representing a dark-adapted amphibian retina. The simulation tests the K+ hypothesis of b-wave generation, which holds that b-wave currents arise from localized Müller cell depolarizations generated by light-evoked increases in extracellular K+ concentration, [K+]o. The model incorporates the following components and processes quantitatively: 1) two time-dependent K+ sources representing the light-evoked [K+]o increases in the inner and outer plexiform layers, 2) a time- and [K+]o-dependent K+ sink representing the [K+]o decrease in the rod inner segment layer, 3) diffusion of released K+ through extracellular space, 4) active K+ reuptake and passive K+ drift across the Müller cell membrane, 5) spatial variations in the tortuosity factor and the volume fraction of extracellular space, 6) an extraretinal shunt resistance. Müller cells are modeled with 1) cytoplasmic resistance, 2) spatial variations in membrane permeability to K+, and 3) a membrane potential specified by the Nernst equation and transmembrane current flow. For specified K+ source and sink densities, the model computes [K+]o variations in time and retinal depth. Based on these [K+]o distributions, Müller cell potentials, current source-density profiles, and intraretinal and transretinal voltages are calculated. Imposed [K+]o distributions similar to those seen experimentally during the b-wave lead to the generation of a transient b-wave response and to a prolonged Müller response in the model system. These response time courses arise because the b-wave is dominated by the short-lived distal [K+]o increase, while the Müller response primarily reflects the long-lived proximal [K+]o increase. Current source-density distributions and intraretinal voltage profiles that are generated by the model at the peak of the b-wave closely resemble experimental results. The model generates a realistic slow PIII potential in response to prolonged [K+]o decreases in the distal retina and reproduces the K+ ejection results of Yanagida and Tomita (50) accurately. Simulations also suggest that tissue damage caused by K+-selective micropipettes in experimental preparations can lead to an underestimation of the distal [K+]o increase. The simulations demonstrate that the spatiotemporal properties of intraretinal b-wave voltages and currents and Müller cell responses can be generated according to the K+ hypothesis: by passive Müller cell depolarization driven by variations in [K+]o.
利用一个代表暗适应两栖动物视网膜的计算机模型模拟视网膜电图b波的产生。该模拟测试了b波产生的K⁺假说,该假说认为b波电流源于细胞外K⁺浓度([K⁺]o)光诱发增加所产生的局部米勒细胞去极化。该模型定量纳入了以下成分和过程:1)两个随时间变化的K⁺源,代表内、外丛状层中光诱发的[K⁺]o增加;2)一个随时间和[K⁺]o变化的K⁺汇,代表视杆细胞内节层中[K⁺]o的降低;3)释放的K⁺通过细胞外空间的扩散;4)K⁺的主动重摄取和通过米勒细胞膜的被动K⁺漂移;5)曲折因子和细胞外空间体积分数的空间变化;6)视网膜外分流电阻。米勒细胞的建模考虑了:1)细胞质电阻;2)对K⁺的膜通透性的空间变化;3)由能斯特方程和跨膜电流流动指定的膜电位。对于指定的K⁺源和汇密度,该模型计算[K⁺]o随时间和视网膜深度的变化。基于这些[K⁺]o分布,计算米勒细胞电位、电流源密度分布以及视网膜内和跨视网膜电压。施加与实验中b波期间观察到的类似的[K⁺]o分布会导致在模型系统中产生短暂的b波反应和延长的米勒反应。这些反应时间进程的出现是因为b波主要由短暂的远端[K⁺]o增加主导,而米勒反应主要反映了长期的近端[K⁺]o增加。该模型在b波峰值时产生的电流源密度分布和视网膜内电压分布与实验结果非常相似。该模型对远端视网膜中[K⁺]o的长期降低产生了逼真的慢PIII电位,并准确再现了柳田和富田(50)的K⁺喷射结果。模拟还表明,实验制剂中K⁺选择性微电极造成的组织损伤可能导致对远端[K⁺]o增加的低估。模拟表明,视网膜内b波电压和电流以及米勒细胞反应的时空特性可以根据K⁺假说产生:由[K⁺]o变化驱动的米勒细胞被动去极化。