Suppr超能文献

Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency.

作者信息

Duhm J, Göbel B O

出版信息

Am J Physiol. 1984 Jan;246(1 Pt 1):C20-9. doi: 10.1152/ajpcell.1984.246.1.C20.

Abstract

Red cell Na+ and K+ content and transport were studied in Sprague-Dawley rats in the course of a dietary K+ depletion ranging 1-6 wk. Plasma K+ fell to below 2 mM, and red cell K+ decreased. Cellular Na+ rose due to an increase of the Na+ leak. Inward Rb+ and outward Na+ transport by the Na+-K+ pump (determined at 2 mM external Rb+) were accelerated by the rise in cell Na+ concentration. K+ depletion caused a cation deficit of up to 30% of total red cell Na+ plus K+ and a consecutive cell shrinkage with an increase in mean cellular hemoglobin content (MCHC). The cell shrinkage, in turn, was paralleled by up to a 10-fold increase in the maximum capacity of the furosemide-sensitive, chloride-dependent Na+-K+ cotransport system. This system participated with up to 50% of the total K+ movements across the red cell membrane in severe K+ deficiency. In normal cells shrunken by osmotic means, Na+-K+ cotransport was similarly accelerated severalfold, indicating that the cell shrinkage occurring during K+ depletion is a major factor inducing the changes in Na+-K+ cotransport. However, a second unknown factor is also involved. It is concluded that in the rat, not only genetic but also environmental parameters contribute in determining the actual activity of the red cell Na+-K+ cotransport system. The cell volume and MCHC must be considered when judging Na+ and K+ transport changes observed in rat erythrocytes under various pathophysiological conditions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验