Garbarino M P, Greene R M
Biochem Biophys Res Commun. 1984 Feb 29;119(1):193-202. doi: 10.1016/0006-291x(84)91638-3.
A direct radioligand binding technique utilizing a beta-adrenergic antagonist [3H]Dihydroalprenolol [( 3H]DHA) was employed in the identification and characterization of fetal palatal beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax 16 fmol/mg protein) with high affinity and an apparent equilibrium dissociation constant (KD) of 1.5 nM. Binding of [3H]DHA was displaced by the competitive beta-adrenergic antagonist propranolol in a concentration-dependent manner. Dissociation kinetic studies demonstrated almost complete reversibility of radioligand binding within 60 min. The functionality of these beta-adrenergic receptors was demonstrated by showing that fetal palatal mesenchymal cells responded to catecholamine agonists with dose-dependent accumulations of intracellular cAMP. This effect could be entirely blocked by the beta-antagonist, propranolol. The relative potency order of catecholamines in eliciting an elevation of cellular cAMP was characteristic of a beta 2-adrenergic receptor-mediated response: (-) isoproterenol greater than (-) epinephrine greater than (-) norepinephrine. In addition, this response was found to be stereospecific with (-) isoproterenol being significantly more potent than (+) isoproterenol. Both the [3H]DHA binding characteristics and the catecholamine sensitivity of fetal palatal tissue support the presence of adenylate cyclase-coupled beta-adrenergic receptors in the developing mammalian secondary palate.