Suppr超能文献

Survey, purification, and properties of sugar phosphate phosphohydrolase among microorganisms.

作者信息

Choy F Y, Lee Y P

出版信息

Can J Biochem Cell Biol. 1983 Dec;61(12):1292-303. doi: 10.1139/o83-166.

Abstract

Sugar phosphate phosphohydrolase was purified approximately 500- to 600-fold to apparent homogeneity from Escherichia coli B, Escherichia coli C, Escherichia coli var. communior, Escherichia acidilactici, Enterobacter aerogenes, Neisseria meningitidis, and Saccharomyces cereviseae. The molecular weights of the enzyme as estimated by gel filtration ranged from 97 X 10(3) to 101 X 10(3). The enzyme was composed of two subunits with the same molecular weight which ranged from 50 X 10(3) to 52 X 10(3), as determined by sodium dodecyl sulfate gel electrophoresis. Homogeneous enzyme preparations hydrolyse all the tested alpha-D-aldohexose 1-phosphate, D-(keto or aldo)hexose 6-phosphate, and pentose phosphate substrates significantly. When the microorganisms were transferred from growth medium with 1% glucose to that without glucose, there were dramatic increases in both the specific and total enzyme activities. At least three isozymes appeared to be present in S. cereviseae, and two appeared to be present in E. coli B, E. coli var. communior, and N. meningitidis. Rabbit antiserum immunized against sugar phosphate phosphohydrolase purified from E. coli B cross-reacted with both the crude extracts and purified preparations of the enzyme from the other microorganisms. The presence of neither sugar phosphate phosphohydrolase activity nor immunocrossreacting material was detected in the following microorganisms: Aspergillus niger, Azotobacter chroococcum, Bacillus subtilis, Bacillus pumilis, Citrobacter freundii, Clostridium butyricum, Corynebacterium xerosis, Flavobacterium aquatile, Flavobacterium synxanthum, Lactobacillus bulgaricus, Micrococcus coralinus, Neisseria perflava, Neurospora crassa, Penicilium expansum, Penicilium notatum, Proteus mirabilis, Proteus vulgaris, Pseudomonas fluorescens, Saccharomyces fermenti, Sarcina lutea, and Streptomyces antibioticus. At present, no conclusive relationship can be established between the phosphoenolpyruvate phosphotransferase system and the enzyme sugar phosphate phosphohydrolase among microorganisms. The physiological role of sugar phosphate phosphohydrolase as a transferase and regulatory enzyme is discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验