Suppr超能文献

Biogenic amine-sensitive adenylate cyclases in primary culture of neuronal or glial cells from mesencephalon.

作者信息

Chneiweiss H, Prochiantz A, Glowinski J, Premont J

出版信息

Brain Res. 1984 Jun 8;302(2):363-70. doi: 10.1016/0006-8993(84)90251-8.

Abstract

Primary cultures of virtually pure mesencephalic neurons (5 days) or glials (4 weeks) from 14-day-old mouse embryo were obtained using appropriate medium. Membranes prepared from neuronal cells contained mainly serotonin and beta 1-adrenergic-sensitive adenylate cyclases. However, a low but significant classical dopamine-sensitive adenylate cyclase activity (D1 receptor) was detected. Contrasting with the data obtained from a previous study on striatal neurons no adenosine-sensitive adenylate cyclase was found on mesencephalic neurons. Study on the additive effects of the 3 biogenic amines-sensitive adenylate cyclases indicated that: all neuronal cells having dopamine receptors possess beta 1-adrenergic receptors (no additivity); beta 1-adrenergic and serotonin receptors on the one hand, and dopamine and serotonin receptors on the other hand, were coupled with independent adenylate cyclase systems localized either on two different domains of the same cell or on different cells (complete additivity). Membranes prepared from primary mesencephalic cultures of glial cells contained a mixture of beta 1- and beta 2-adrenergic receptor subtypes coupled with an adenylate cyclase (70% and 30%, respectively). No dopamine- or serotonin-sensitive adenylate cyclase was detected on mesencephalic glial cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验