Suppr超能文献

The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein.

作者信息

Schlesinger S, Malfer C, Schlesinger M J

出版信息

J Biol Chem. 1984 Jun 25;259(12):7597-601.

PMID:6330065
Abstract

We have studied the effects of inhibiting the initial steps in processing of asparagine-linked oligosaccharides on the formation of vesicular stomatitis virus (VSV). Our data show that conditions which prevent the removal of glucose can block the growth of this virus. Our conclusion that inhibition of VSV synthesis is due specifically to an effect on the ability of the virus glycoprotein, G, to mature to a correct functional conformation is based on the following observations: (i) two drugs, deoxynojirimycin and castanospermine , both of which selectively inhibit the processing glucosidases, affected virus growth; (ii) only one of the two strains (San Juan and Orsay ) of VSV tested was affected and that strain, VSV(San Juan), is known to have a G protein highly sensitive to alterations in oligosaccharide structure; (iii) the effect was to make the formation of VSV(San Juan) temperature-sensitive, a result previously observed with alterations in the oligosaccharides on G protein; (iv) a cell variant missing glucosidase II activity also became temperature-sensitive in its ability to produce VSV(San Juan) but not VSV( Orsay ). Although inhibition of glucosidase activity by 1- deoxynojirimycin caused a 10-fold drop in virion formation, transport of G protein to the plasma membrane was not altered. The growth of VSV(San Juan) at 40 degrees C was not affected when subsequent steps in the processing pathway were blocked. These data indicate that by the time the glucose residues are removed G has attained a stable conformation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验