Vlassov V V, Kern D, Romby P, Giegé R, Ebel J P
Eur J Biochem. 1983 May 16;132(3):537-44. doi: 10.1111/j.1432-1033.1983.tb07395.x.
The alkylation by ethylnitrosourea of phosphodiester bonds in tRNAPhe from yeast and in tRNAVal from yeast and from rabbit liver and that by 4-(N-2-chloroethyl-N-methylamino)-benzylamine of N-7 atoms of guanosine residues in yeast tRNAVal have been used to study the interaction of these tRNAs with aminoacyl-tRNA synthetases. The modifications occurring at low yield were carried out on 3' and/or 5' end-labelled tRNAs either free or in the presence of cognate or non-cognate synthetases. After splitting of the tRNAs at the alkylated positions, the position of the modification sites in the tRNA sequences were detected by acrylamide gel electrophoresis. It was found that the synthetases protect against alkylation certain phosphate or guanosine residues in their cognate tRNAs. Non-cognate synthetases failed to protect efficiently specific positions in tRNA against modification. In yeast tRNAPhe the cognate phenylalanyl-tRNA synthetase protects certain phosphates located in all four stems and in the anticodon and extra-loop of the tRNA. Particularly strong protections occur on phosphate 34 in the anticodon loop and on phosphates 23, 27, 28, 41 and 46 in the D and anticodon stems. In yeast tRNAVal complexed with yeast valyl-tRNA synthetase the protected phosphates are essentially located in the corner between the amino-acid-accepting and D stems, in the D loop, anticodon stem and in the variable region of the tRNA. Three guanosine residues, located in the D stem, and another one in the 3' part of the anticodon stem were also found protected by the synthetase. In mammalian tRNAVal, complexed with the cognate but heterologous yeast valyl-tRNA synthetase, the protected phosphates lie in the anticodon stem, in the extra-loop and in the T psi arm. The location of the protected residues in the structure of three tRNAs suggests some common features in the binding of tRNAs to aminoacyl-tRNA synthetases. These results will be discussed in the light of informations on interaction sites obtained by nuclease digestion and ultraviolet cross-linking methods.
利用乙基亚硝基脲对来自酵母的苯丙氨酸转运核糖核酸(tRNAPhe)以及来自酵母和兔肝的缬氨酸转运核糖核酸(tRNAVal)中的磷酸二酯键进行烷基化,并用4-(N-2-氯乙基-N-甲氨基)-苄胺对酵母tRNAVal中鸟苷残基的N-7原子进行烷基化,以研究这些tRNA与氨酰-tRNA合成酶的相互作用。对低产率发生的修饰是在3'和/或5'末端标记的游离tRNA上进行的,或者是在同源或非同源合成酶存在的情况下进行的。在tRNA的烷基化位置进行切割后,通过丙烯酰胺凝胶电泳检测tRNA序列中修饰位点的位置。结果发现,合成酶能保护其同源tRNA中的某些磷酸或鸟苷残基不被烷基化。非同源合成酶不能有效地保护tRNA中的特定位置不被修饰。在酵母tRNAPhe中,同源的苯丙氨酰-tRNA合成酶能保护位于tRNA所有四个茎以及反密码子和额外环中的某些磷酸。在反密码子环中的磷酸34以及D茎和反密码子茎中的磷酸23、27、28、41和46处有特别强的保护作用。在与酵母缬氨酰-tRNA合成酶复合的酵母tRNAVal中,受保护的磷酸基本上位于氨基酸接受茎和D茎之间的角落、D环、反密码子茎以及tRNA的可变区。还发现位于D茎中的三个鸟苷残基以及反密码子茎3'部分的另一个鸟苷残基受到合成酶的保护。在与同源但异源的酵母缬氨酰-tRNA合成酶复合的哺乳动物tRNAVal中,受保护的磷酸位于反密码子茎、额外环和Tψ臂中。三种tRNA结构中受保护残基的位置表明tRNA与氨酰-tRNA合成酶结合存在一些共同特征。将根据通过核酸酶消化和紫外线交联方法获得的关于相互作用位点的信息来讨论这些结果。