Suppr超能文献

感染麻疹病毒和1型单纯疱疹病毒的非洲绿猴肾细胞中微丝的命运

Fate of microfilaments in vero cells infected with measles virus and herpes simplex virus type 1.

作者信息

Bedows E, Rao K M, Welsh M J

出版信息

Mol Cell Biol. 1983 Apr;3(4):712-9. doi: 10.1128/mcb.3.4.712-719.1983.

Abstract

In herpes simplex virus type 1-infected Vero cells, reorganization of microfilaments was observed approximately 4 h postinfection. Conversion of F (filamentous) actin to G (globular) actin, as assessed by a DNase I inhibition assay, was continuous over the next 12 to 16 h, at which time a level of G actin of about twice that observed in uninfected cells was measured. Fluorescent localization of F actin, using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin, demonstrated that microfilament fibers began to diminish at about 16 to 18 h postinfection, roughly corresponding to the time that G actin levels peaked and virus-induced cytopathology was first observable. In measles virus-infected cells, no such disassembly of microfilaments occurred. Rather, there was a modest decrease in G actin levels. Fluorescent localization of F actin showed that measles virus-infected Vero cells maintained a complex microfilament network characterized by fibers which spanned the entire length of the newly formed giant cells. Disruption of microfilaments with cytochalasin B, which inhibits measles virus-specific cytopathology, was not inhibitory to measles virus production at high multiplicities of infection (MOI) but was progressively inhibitory as the MOI was lowered. The carbobenzoxy tripeptide SV-4814, which inhibits the ability of Vero cells to fuse after measles virus infection, like cytochalasin B, inhibited measles virus production at low MOI but not at high MOI. Thus, it appears that agents which affect the ability of Vero cells to fuse after measles virus infection may be inhibitory to virus production and that the actin network is essential to this process.

摘要

在单纯疱疹病毒1型感染的非洲绿猴肾细胞中,感染后约4小时观察到微丝的重组。通过脱氧核糖核酸酶I抑制试验评估,丝状肌动蛋白(F-肌动蛋白)向球状肌动蛋白(G-肌动蛋白)的转化在接下来的12至16小时内持续进行,此时测得的G-肌动蛋白水平约为未感染细胞中观察到水平的两倍。使用7-硝基苯并-2-恶唑-1,3-二氮杂茂(NBD)-鬼笔环肽对F-肌动蛋白进行荧光定位显示,微丝纤维在感染后约16至18小时开始减少,大致与G-肌动蛋白水平达到峰值且病毒诱导的细胞病变首次可观察到的时间相对应。在麻疹病毒感染的细胞中,未发生这种微丝的解聚。相反,G-肌动蛋白水平有适度下降。F-肌动蛋白的荧光定位显示,麻疹病毒感染的非洲绿猴肾细胞维持着一个复杂的微丝网络,其特征是纤维贯穿新形成的巨细胞的整个长度。用细胞松弛素B破坏微丝,细胞松弛素B可抑制麻疹病毒特异性细胞病变,在高感染复数(MOI)时对麻疹病毒产生没有抑制作用,但随着MOI降低逐渐产生抑制作用。苄氧羰基三肽SV-4814可抑制麻疹病毒感染后非洲绿猴肾细胞的融合能力,与细胞松弛素B一样,在低MOI时抑制麻疹病毒产生,但在高MOI时不抑制。因此,似乎影响麻疹病毒感染后非洲绿猴肾细胞融合能力的药物可能抑制病毒产生,并且肌动蛋白网络对这一过程至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c36c/368587/61ea9ba03e29/molcellb00158-0226-a.jpg

相似文献

1
Fate of microfilaments in vero cells infected with measles virus and herpes simplex virus type 1.
Mol Cell Biol. 1983 Apr;3(4):712-9. doi: 10.1128/mcb.3.4.712-719.1983.
2
Role of actin microfilaments in canine distemper virus replication in vero cells.
J Vet Med Sci. 2004 Apr;66(4):409-15. doi: 10.1292/jvms.66.409.
3
Role of cytoskeleton components in measles virus replication.
Arch Virol. 2004 May;149(5):891-901. doi: 10.1007/s00705-003-0264-9. Epub 2004 Jan 29.
4
Role of actin microfilaments in Black Creek Canal virus morphogenesis.
J Virol. 1998 Apr;72(4):2865-70. doi: 10.1128/JVI.72.4.2865-2870.1998.
6
Interaction of frog virus 3 with the cytomatrix. III. Role of microfilaments in virus release.
Virology. 1985 Apr 30;142(2):317-25. doi: 10.1016/0042-6822(85)90340-x.
7
Cytochalasin B inhibits the maturation of measles virus.
Virology. 1983 Jan 15;124(1):59-74. doi: 10.1016/0042-6822(83)90290-8.
9
Cytoskeletal regulation of Caco-2 intestinal monolayer paracellular permeability.
J Cell Physiol. 1995 Sep;164(3):533-45. doi: 10.1002/jcp.1041640311.

引用本文的文献

1
Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire.
PLoS One. 2021 Jun 4;16(6):e0246610. doi: 10.1371/journal.pone.0246610. eCollection 2021.
2
Herpesvirus acts with the cytoskeleton and promotes cancer progression.
J Cancer. 2019 May 21;10(10):2185-2193. doi: 10.7150/jca.30222. eCollection 2019.
3
Inhibition of Rho-associated coiled-coil-forming kinase increases efficacy of measles virotherapy.
Cancer Gene Ther. 2013 Nov;20(11):630-7. doi: 10.1038/cgt.2013.58. Epub 2013 Oct 25.
5
Cytoskeletal dynamics: concepts in measles virus replication and immunomodulation.
Viruses. 2011 Feb;3(2):102-117. doi: 10.3390/v3020102. Epub 2011 Jan 26.
6
Herpesvirus interactions with the host cytoskeleton.
J Virol. 2009 Mar;83(5):2058-66. doi: 10.1128/JVI.01718-08. Epub 2008 Oct 8.
9
Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown.
J Virol. 2003 Aug;77(16):9074-80. doi: 10.1128/jvi.77.16.9074-9080.2003.
10
Evidence of a role for nonmuscle myosin II in herpes simplex virus type 1 egress.
J Virol. 2002 Apr;76(7):3471-81. doi: 10.1128/jvi.76.7.3471-3481.2002.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Actin filament bundles in vaccinia virus infected fibroblasts.
Arch Virol. 1981;67(1):11-8. doi: 10.1007/BF01314597.
4
Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin.
Proc Natl Acad Sci U S A. 1980 Feb;77(2):980-4. doi: 10.1073/pnas.77.2.980.
5
Mechanism of action of cytochalasin B on actin.
Cell. 1980 Jun;20(2):329-41. doi: 10.1016/0092-8674(80)90619-4.
6
A competitive radioimmunoassay on a magnetic phase for actin detection.
FEBS Lett. 1980 Feb 11;110(2):327-9. doi: 10.1016/0014-5793(80)80103-7.
8
Evidence for an interaction between the membrane protein of a paramyxovirus and actin.
J Virol. 1982 Jun;42(3):963-8. doi: 10.1128/JVI.42.3.963-968.1982.
10
A DNase I binding/immunoprecipitation assay for actin.
J Biol Chem. 1981 Jun 25;256(12):6291-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验