Suppr超能文献

大肠杆菌对柠檬酸盐的利用:质粒和染色体编码系统

Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems.

作者信息

Reynolds C H, Silver S

出版信息

J Bacteriol. 1983 Dec;156(3):1019-24. doi: 10.1128/jb.156.3.1019-1024.1983.

Abstract

Citrate utilization plasmids have previously been identified in atypical Escherichia coli isolates. A different citrate-utilizing (Cit+) variant of E. coli K-12 arose as a consequence of two chromosomal mutations (B. G. Hall, J. Bacteriol. 151:269-273, 1982). The processes controlling the transport of citrate in both a Cit+ chromosomal mutant and a Cit+ plasmid system were studied. Both systems were found to be inducible in growth experiments. In transport assays with whole cells, citrate-grown cells accumulated [1,5-14C]citrate at two to three times the rate of uninduced cells. Only the Vmax was affected by induction, and the Km for whole cells remained at 67 microM citrate for the chromosomal strain and 120 microM citrate for the plasmid-conferred system. There was no detectable accumulation of radioactivity with [6-14C]citrate, because of rapid metabolism and the release of 14CO2. Energy-dependent citrate transport was found with membrane vesicles obtained from both the chromosome-conferred and the plasmid Cit+ systems. The vesicle systems were inhibited by valinomycin and carbonyl cyanide m-chloro-phenylhydrazone but not by nigericin and monensin. In contrast to whole cells, the vesicle systems were resistant to Hg2+ and showed identical kinetics with [1,5-14C]citrate and [6-14C]citrate. H+ appeared to be important for citrate transport in whole cells and membranes. Monovalent cations such as Na+ and K+, divalent cations such as Mg2+ and Mn2+, and anions such as PO4(3-), SO4(2-), and NO3- were not required. The two systems differed in inhibition by citrate analogs.

摘要

之前已在非典型大肠杆菌分离株中鉴定出柠檬酸盐利用质粒。大肠杆菌K-12的一种不同的利用柠檬酸盐(Cit+)变体是由两个染色体突变产生的(B.G.霍尔,《细菌学杂志》151:269 - 273,1982年)。研究了控制Cit+染色体突变体和Cit+质粒系统中柠檬酸盐转运的过程。在生长实验中发现这两个系统都是可诱导的。在全细胞转运测定中,用柠檬酸盐培养的细胞积累[1,5 - 14C]柠檬酸盐的速率是未诱导细胞的两到三倍。只有最大反应速度(Vmax)受诱导影响,对于染色体菌株,全细胞的米氏常数(Km)保持在67微摩尔柠檬酸盐,对于质粒赋予的系统则为120微摩尔柠檬酸盐。由于快速代谢和14CO2的释放,用[6 - 14C]柠檬酸盐未检测到放射性积累。从染色体赋予的和质粒Cit+系统获得的膜囊泡都发现有能量依赖的柠檬酸盐转运。膜囊泡系统被缬氨霉素和羰基氰化物间氯苯腙抑制,但不被尼日利亚菌素和莫能菌素抑制。与全细胞相反,膜囊泡系统对Hg2+有抗性,并且对[1,5 - 14C]柠檬酸盐和[6 - 14C]柠檬酸盐表现出相同的动力学。H+似乎对全细胞和膜中的柠檬酸盐转运很重要。不需要单价阳离子如Na+和K+、二价阳离子如Mg2+和Mn2+以及阴离子如PO4(3 - )、SO4(2 - )和NO3 - 。这两个系统在柠檬酸盐类似物的抑制作用上有所不同。

相似文献

1
Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems.
J Bacteriol. 1983 Dec;156(3):1019-24. doi: 10.1128/jb.156.3.1019-1024.1983.
3
Chromosomal mutation for citrate utilization by Escherichia coli K-12.
J Bacteriol. 1982 Jul;151(1):269-73. doi: 10.1128/jb.151.1.269-273.1982.
5
Citrate transport in Klebsiella pneumoniae.
Biol Chem Hoppe Seyler. 1986 Aug;367(8):813-23. doi: 10.1515/bchm3.1986.367.2.813.
6
Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli.
Appl Environ Microbiol. 1990 Jul;56(7):2099-103. doi: 10.1128/aem.56.7.2099-2103.1990.
7
Cloning and DNA sequence of a plasmid-determined citrate utilization system in Escherichia coli.
J Bacteriol. 1985 Dec;164(3):983-93. doi: 10.1128/jb.164.3.983-993.1985.
9
Plasmids in Escherichia coli controlling citrate-utilizing ability.
Appl Environ Microbiol. 1979 Nov;38(5):956-64. doi: 10.1128/aem.38.5.956-964.1979.
10
Polypeptide involved in the Escherichia coli plasmid-mediated citrate transport system.
J Bacteriol. 1984 Oct;160(1):421-6. doi: 10.1128/jb.160.1.421-426.1984.

引用本文的文献

2
Redundancy in Citrate and -Aconitate Transport in .
J Bacteriol. 2022 Dec 20;204(12):e0028422. doi: 10.1128/jb.00284-22. Epub 2022 Nov 2.
3
Comparative Metabolic Characterization of Extraintestinal Pathogenic Blood Isolates from Saudi Arabia.
J Trop Med. 2022 May 30;2022:1745835. doi: 10.1155/2022/1745835. eCollection 2022.
4
Comparative phenotypic characterization identifies few differences in the metabolic capacity between ST131 subclones.
Saudi J Biol Sci. 2021 Jan;28(1):762-769. doi: 10.1016/j.sjbs.2020.11.008. Epub 2020 Nov 11.
5
Genomic and phenotypic evolution of in a novel citrate-only resource environment.
Elife. 2020 May 29;9:e55414. doi: 10.7554/eLife.55414.
7
Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906. doi: 10.1073/pnas.0803151105. Epub 2008 Jun 4.
8
Characterization of the L-malate permease gene (maeP) of Streptococcus bovis ATCC 15352.
J Bacteriol. 1997 Jun;179(12):4056-60. doi: 10.1128/jb.179.12.4056-4060.1997.
9
Exogenous induction of the iron dicitrate transport system of Escherichia coli K-12.
J Bacteriol. 1984 Jul;159(1):271-7. doi: 10.1128/jb.159.1.271-277.1984.
10
Polypeptide involved in the Escherichia coli plasmid-mediated citrate transport system.
J Bacteriol. 1984 Oct;160(1):421-6. doi: 10.1128/jb.160.1.421-426.1984.

本文引用的文献

1
Coliform "Mutants," with Respect to the Utilization of Citrate.
J Bacteriol. 1940 Oct;40(4):467-82. doi: 10.1128/jb.40.4.467-482.1940.
3
Oxidation of citrate by Escherichia coli.
J Bacteriol. 1952 Mar;63(3):415-20. doi: 10.1128/jb.63.3.415-420.1952.
4
Dissimilation of citric acid by Aerobacter aerogenes and Escherichia coli.
J Gen Microbiol. 1954 Oct;11(2):218-27. doi: 10.1099/00221287-11-2-218.
5
Chromosomal mutation for citrate utilization by Escherichia coli K-12.
J Bacteriol. 1982 Jul;151(1):269-73. doi: 10.1128/jb.151.1.269-273.1982.
7
Incompatibility of citrate utilization plasmids isolated from Escherichia coli.
J Gen Microbiol. 1981 Mar;123(1):193-6. doi: 10.1099/00221287-123-1-193.
9
Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate.
J Gen Microbiol. 1980 Jul;119(1):63-70. doi: 10.1099/00221287-119-1-63.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验