Reynolds C H, Silver S
J Bacteriol. 1983 Dec;156(3):1019-24. doi: 10.1128/jb.156.3.1019-1024.1983.
Citrate utilization plasmids have previously been identified in atypical Escherichia coli isolates. A different citrate-utilizing (Cit+) variant of E. coli K-12 arose as a consequence of two chromosomal mutations (B. G. Hall, J. Bacteriol. 151:269-273, 1982). The processes controlling the transport of citrate in both a Cit+ chromosomal mutant and a Cit+ plasmid system were studied. Both systems were found to be inducible in growth experiments. In transport assays with whole cells, citrate-grown cells accumulated [1,5-14C]citrate at two to three times the rate of uninduced cells. Only the Vmax was affected by induction, and the Km for whole cells remained at 67 microM citrate for the chromosomal strain and 120 microM citrate for the plasmid-conferred system. There was no detectable accumulation of radioactivity with [6-14C]citrate, because of rapid metabolism and the release of 14CO2. Energy-dependent citrate transport was found with membrane vesicles obtained from both the chromosome-conferred and the plasmid Cit+ systems. The vesicle systems were inhibited by valinomycin and carbonyl cyanide m-chloro-phenylhydrazone but not by nigericin and monensin. In contrast to whole cells, the vesicle systems were resistant to Hg2+ and showed identical kinetics with [1,5-14C]citrate and [6-14C]citrate. H+ appeared to be important for citrate transport in whole cells and membranes. Monovalent cations such as Na+ and K+, divalent cations such as Mg2+ and Mn2+, and anions such as PO4(3-), SO4(2-), and NO3- were not required. The two systems differed in inhibition by citrate analogs.
之前已在非典型大肠杆菌分离株中鉴定出柠檬酸盐利用质粒。大肠杆菌K-12的一种不同的利用柠檬酸盐(Cit+)变体是由两个染色体突变产生的(B.G.霍尔,《细菌学杂志》151:269 - 273,1982年)。研究了控制Cit+染色体突变体和Cit+质粒系统中柠檬酸盐转运的过程。在生长实验中发现这两个系统都是可诱导的。在全细胞转运测定中,用柠檬酸盐培养的细胞积累[1,5 - 14C]柠檬酸盐的速率是未诱导细胞的两到三倍。只有最大反应速度(Vmax)受诱导影响,对于染色体菌株,全细胞的米氏常数(Km)保持在67微摩尔柠檬酸盐,对于质粒赋予的系统则为120微摩尔柠檬酸盐。由于快速代谢和14CO2的释放,用[6 - 14C]柠檬酸盐未检测到放射性积累。从染色体赋予的和质粒Cit+系统获得的膜囊泡都发现有能量依赖的柠檬酸盐转运。膜囊泡系统被缬氨霉素和羰基氰化物间氯苯腙抑制,但不被尼日利亚菌素和莫能菌素抑制。与全细胞相反,膜囊泡系统对Hg2+有抗性,并且对[1,5 - 14C]柠檬酸盐和[6 - 14C]柠檬酸盐表现出相同的动力学。H+似乎对全细胞和膜中的柠檬酸盐转运很重要。不需要单价阳离子如Na+和K+、二价阳离子如Mg2+和Mn2+以及阴离子如PO4(3 - )、SO4(2 - )和NO3 - 。这两个系统在柠檬酸盐类似物的抑制作用上有所不同。