Larcan A, Stoltz J F
Ann Med Interne (Paris). 1983;134(5):395-410.
Blood has a number of rheological properties which partially determine flow, especially at capillary level, and its capacity to deliver oxygen. It is non-Newtonian, pseudoplastic, thixotropic and viscoelastic. Viscosity can be studied with different types of viscosimeters (coaxial cylinder or capillary viscosimeters). It can be defined by the ratio of stress of deformation to rate of deformation. Viscosity depends on macrorheological parameters: hematocrit, serum proteins, especially fibrinogen and globulins, and also on microrheological parameters: degree of aggregation and red blood cell deformability. Viscosity rises when the temperature falls and decreases with the radius of the tube through which the blood flows (Fahraeus-Linqvist effects). Blood viscosity is studied clinically at different temperatures, and, above all, at different rates of deformation by carefully recording the hematocrit. Plasma viscosity, fibrinogen, albumia and immunoglobulin levels, the viscosity of blood cell suspensions in normal saline must also be taken into consideration. Special investigations (rheoscopy, filtrability) provide information about red cell aggregation and deformability. Hyperviscosity syndromes are observed with: --raised hematocrit (polycythemia and pseudopolycythemia), --conditions with raised serum proteins or changes in their composition (especially hyperfibrinogenemia, raised immunoglobulins, low albumin levels); inflammatory syndromes, dysglobulinemias (Fahey's syndrome of plasma hyperviscosity), --low temperature (hypothermia), --increased red cell aggregability (shock, fat embolism), --reduced red cell deformability due to various congenital and acquired conditions (sickle cell anemia, renal failure, hyperlipoproteinemia, thrombosis, diabetes). Conversely, hypoviscosity may occur with a low hematocrit, hypoproteinemia, hypofibrinogenemia, and hyperthermia. Increased viscosity results in a slowing of blood flow, stagnation of its constituents and in ischemia. Therapeutic interventions may be considered on the different components of the hyperviscosity syndrome: hemodilation, plasmapheresis, dispersion of aggregants, agents acting on red cell deformability.
血液具有多种流变学特性,这些特性部分决定了血流,尤其是在毛细血管水平,以及其输送氧气的能力。它是非牛顿流体,具有假塑性、触变性和粘弹性。可以使用不同类型的粘度计(同轴圆筒粘度计或毛细管粘度计)来研究粘度。粘度可以通过变形应力与变形速率之比来定义。粘度取决于宏观流变学参数:血细胞比容、血清蛋白,尤其是纤维蛋白原和球蛋白,还取决于微观流变学参数:聚集程度和红细胞变形性。粘度随温度降低而升高,随血液流动的管道半径减小而降低(法-林效应)。临床上在不同温度下研究血液粘度,最重要的是,通过仔细记录血细胞比容,在不同变形速率下进行研究。还必须考虑血浆粘度、纤维蛋白原、白蛋白和免疫球蛋白水平,以及生理盐水红细胞悬液的粘度。特殊检查(血流变学检查、过滤性)可提供有关红细胞聚集和变形性的信息。在以下情况中可观察到高粘滞综合征:——血细胞比容升高(真性红细胞增多症和假性红细胞增多症),——血清蛋白升高或其组成发生变化的情况(尤其是高纤维蛋白原血症、免疫球蛋白升高、白蛋白水平降低);炎症综合征、球蛋白异常血症(法伊血浆高粘滞综合征),——低温(体温过低),——红细胞聚集性增加(休克、脂肪栓塞),——由于各种先天性和后天性疾病导致红细胞变形性降低(镰状细胞贫血、肾衰竭、高脂蛋白血症、血栓形成、糖尿病)。相反,低血细胞比容、低蛋白血症、低纤维蛋白原血症和高热可能导致低粘滞性。粘度增加会导致血流减慢、其成分停滞以及局部缺血。可针对高粘滞综合征的不同组成部分考虑治疗干预措施:血液稀释、血浆置换、聚集剂分散、作用于红细胞变形性的药物。