Fukunaga M, Cox B A, von Sprecken R S, Yielding L W
Mutat Res. 1984 Jun;127(1):31-7. doi: 10.1016/0027-5107(84)90137-4.
The effect of metabolic activation on the mutagenic potential of some phenanthridinium compounds was examined in Salmonella typhimurium strains TA1538 and TA1978 . All of the compounds tested were mutagenic in TA1538, a DNA excision-repair-deficient strain, when metabolizing enzymes were included in the assay. Reversions were not detected when these compounds were examined under the same conditions in TA1978 , the isogenic strain of TA1538 proficient in DNA repair. The mutagenic activity of an azido analog of propidium iodide was also examined using photoactivation and enzymatic activation, and with both conditions, reversions were observed in TA1538 but not in TA1978 . Furthermore, the ranking of mutagenic activity of propidium azide relative to ethidium azide analogs was comparable for both types of activation. The evidence from several studies suggests that the structural requirements for mutagenic activity for this series of phenanthridinium compounds appear to be the same whether mutagenesis is induced via photoactivation or metabolic activation. The interaction with DNA resulting in covalent alteration of the DNA is implicated as the mutagenic mechanism whether the active species is generated by metabolic- or photo-activation.