Suppr超能文献

The interaction of bovine factor V and factor V-derived peptides with phospholipid vesicles.

作者信息

Higgins D L, Mann K G

出版信息

J Biol Chem. 1983 May 25;258(10):6503-8.

PMID:6406482
Abstract

The binding of bovine Factor V, isolated Factor Va, and isolated activation intermediates to single bilayer phospholipid vesicles was studied by light scattering. The vesicles composed of 25% phosphatidylserine and 75% phosphatidylcholine had a mean radius of approximately 163 A as determined by quasi-elastic light scattering. When these vesicles were saturated with Factor V, the radii increased by approximately 120 A in both 0.15 and 1 M NaCl. At saturation, about 35 molecules of Factor V and 141 molecules of Factor Va were bound to each vesicle. Studies of the binding of Factor V and Factor Va at various ionic strengths showed little change in either Kd or n, suggesting that the binding is not electrostatic. The dissociation constants (Kd) and the lipid to protein ratios at saturation, moles/mol (n), obtained by relative light scattering intensities were: Factor V (Kd = 4.3 X 10(-8) M, n = 214); isolated Factor Va (Kd = 1.7 X 10(-7) M, n = 57); component B, Mr = 205,000 (Kd = 1.8 X 10(-7) M, n = 140); component C, Mr = 150,000 (Kd = 7.0 X 10(-7) M, n = 136); component D, Mr = 94,000 (no binding could be demonstrated); component E, Mr = 74,000 (Kd = 3.8 X 10(-7) M, n = 42). The results presented here indicate that the lower Kd exhibited by Factor V compared to Factor Va (components D and E) is primarily due to the interaction present within the component C portion of the molecule which is destroyed when component C is further cleaved to give component D. The interactions responsible for the binding of Factor Va are expressed in component E as well as in its precursor peptide component B. Dissociation of components D and E by the addition of EDTA indicate that component E alone is responsible for the interaction of bovine Factor Va with phospholipid.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验