Koerner J F, Johnson R L, Freund R K, Robinson M B, Crooks S L
Brain Res. 1983 Aug 8;272(2):299-309. doi: 10.1016/0006-8993(83)90577-2.
We previously demonstrated in the Schaffer collateral-CA1 region of the hippocampus that bath-applied agonists could be distinguished from antagonists among a group of acidic amino acid analogues by extracellular recording techniques. Here we report the use of the extracellular signs of agonist activity for discerning agonists and antagonists among several gamma-substituted glutamate analogues tested in the perforant path. The two-pathway composition of the perforant path offers the advantage over CA1 in that pathway-specificity, a postulated characteristic of antagonists, may be tested. By extracellular recording, D- and L-homocysteic acid, L-serine-O-sulfate, and L-2-amino-4-(5-tetrazolyl)-butanoic acid [L-glutamate tetrazole] were identified as agonists, and all 4 analogues were more potent than L-glutamate for inhibiting synaptic field potentials. Two previously identified antagonists, L-2-amino-4-phosphonobutyric acid and L-O-phosphoserine, exhibited the pathway-specificity and inhibitory kinetics consistent with properties expected for antagonists; both compounds detected 3 perforant path components with the same rank in sensitivity, suggesting that they are acting on the same set of receptors.