Arakawa H, Ito E
Eur J Biochem. 1984 Sep 17;143(3):635-42. doi: 10.1111/j.1432-1033.1984.tb08416.x.
The particulate enzyme from Bacillus subtilis AHU 1031 catalyzed the synthesis of a polysaccharide and glycolipids from UDP-N-acetylmannosaminuronic acid (UDP-ManNAcUA), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucose (UDP-Glc). The polysaccharide synthesis required UDP-ManNAcUA and UDP-GlcNAc, proceeded optimally at pH 8.5 and in the presence of 5 mM MgCl2 and 2.5 mM dithiothreitol, and was stimulated by the addition of UDP-Glc. The molar ratio of ManNAcUA, GlcNAc, and Glc incorporated into polysaccharide was calculated to be 1:1:1.8 from chemical analysis involving reduction with water soluble carbodiimide; its relative molecular mass was estimated to be 12000. The analysis of Smith degradation products revealed that the polysaccharide backbone is composed of repeating trisaccharide units comprising ManNAcUA, GlcNAc, and Glc. Based on the data regarding the time course of the incorporation of glucose into the polysaccharide, extra glucose seems to be attached to the polysaccharide backbone as lateral branches. The saccharide moieties of the glycolipids were identified as GlcNAc, ManNAcUA-GlcNAc, and Glc-ManNAcUA-GlcNAc from several analytical criteria. The addition of antibiotic 24010, a tunicamycin-like antibiotic, at 10 micrograms/ml resulted in almost complete inhibition of the synthesis of glycolipids and polysaccharide. It is therefore concluded that the glycolipids function as intermediates in polysaccharide formation. Incubation of the ManNAcUA-GlcNAc-linked lipid. (labeled in the ManNAcUA moiety) with the particulate enzyme and UDP-Glc resulted incorporation of radioactivity into a trisaccharide-linked lipid and a polysaccharide. These results suggest that the particulate enzyme utilizes the trisaccharide moiety of the Glc-ManNAcUA-GlcNAc-linked lipid for the elongation of the main polysaccharide chain presumed to be cell wall acidic polysaccharide of this strain.
来自枯草芽孢杆菌AHU 1031的颗粒酶催化了由UDP-N-乙酰甘露糖醛酸(UDP-ManNAcUA)、UDP-N-乙酰葡糖胺(UDP-GlcNAc)和UDP-葡萄糖(UDP-Glc)合成多糖和糖脂的过程。多糖合成需要UDP-ManNAcUA和UDP-GlcNAc,在pH 8.5、5 mM MgCl2和2.5 mM二硫苏糖醇存在的条件下最优进行,并受到UDP-Glc添加的刺激。通过涉及水溶性碳二亚胺还原的化学分析计算得出,掺入多糖中的ManNAcUA、GlcNAc和Glc的摩尔比为1:1:1.8;其相对分子质量估计为12000。对史密斯降解产物的分析表明,多糖主链由包含ManNAcUA、GlcNAc和Glc的重复三糖单元组成。基于关于葡萄糖掺入多糖的时间进程的数据,额外的葡萄糖似乎作为侧链连接到多糖主链上。从几个分析标准确定,糖脂的糖部分为GlcNAc、ManNAcUA-GlcNAc和Glc-ManNAcUA-GlcNAc。添加10微克/毫升的抗生素24010(一种衣霉素样抗生素)几乎完全抑制了糖脂和多糖的合成。因此得出结论,糖脂在多糖形成中起中间体的作用。将ManNAcUA-GlcNAc连接的脂质(在ManNAcUA部分标记)与颗粒酶和UDP-Glc一起孵育,导致放射性掺入三糖连接的脂质和多糖中。这些结果表明,颗粒酶利用Glc-ManNAcUA-GlcNAc连接的脂质的三糖部分来延长推测为本菌株细胞壁酸性多糖 的主要多糖链。