Suppr超能文献

Lipoxygenation of arachidonic acid by subcellular preparations from murine keratinocytes.

作者信息

Ziboh V A, Casebolt T L, Marcelo C L, Voorhees J J

出版信息

J Invest Dermatol. 1984 Oct;83(4):248-51. doi: 10.1111/1523-1747.ep12340250.

Abstract

In these studies, we examined the possibility that cell-free preparations from murine keratinocytes possess 5-lipoxygenase activity in addition to the well-established cyclooxygenase pathway of arachidonic acid (AA) in these cells. Our data demonstrated that the high-speed (105,000 g) supernatant preparations of the murine keratinocytes metabolized [14C]AA into labeled lipoxygenase products. Portions of these radioactive metabolites cochromatographed and comigrated with 12-HETE (a marker for 12-lipoxygenase pathway) and with authentic LTB4 (a marker for 5-lipoxygenase pathway) on silicic acid column chromatography and by thin-layer chromatography (TLC) in two solvent systems respectively. Identity of the novel 14C which comigrated with LTB4 on both TLC and column chromatography was verified further by cochromatography of the free acid with authentic LTB4 on a reverse phase (RP) and the methyl esters on a straight phase high-pressure liquid chromatography. Incubation of the cell-free preparations with [14C]AA in the presence of ETYA, NDGA (inhibitors of cyclooxygenase and lipoxygenase pathways) as well as with 15-HETE (an inhibitor of lipoxygenase pathway) resulted in decreased formation of [14C] 12-HETE and the [14C]LTB4-like metabolite. On the contrary, incubations of the cell-free extracts with [14C] AA in the presence of indomethacin (a cyclooxygenase inhibitor) resulted in increased biosynthesis of the labeled lipoxygenase metabolites. These data indicate the existence of enzymes in soluble fraction of murine keratinocyte which can catalyze the transformation of [14C] AA into products of both the 12- and 5-lipoxygenase pathways.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验