Jane J, Robyt J F
Carbohydr Res. 1984 Sep 1;132(1):105-18. doi: 10.1016/0008-6215(84)85068-5.
Human-salivary, porcine-pancreatic, and Bacillus subtilis alpha amylases were used to study the structure of amylose-V complexes with butyl alcohol, tert-butyl alcohol, 1,1,2,2-tetrachloroethane, and 1-naphthol, and of retrograded amylose. Alpha amylase hydrolyzes the amorphous, folding areas on the surfaces of the lamella of packed helices, with the formation of resistant, amylodextrin fragments. Their degree of polymerization (d.p.) corresponds to the diameter of the helices and the folding length of the chain. The resistant fragments were fractionated on a column of Bio-Gel A-0.5m. Gel filtration of human-salivary and porcine-pancreatic alpha amylase hydrolyzates gave resistant fragments whose peak fractions, i.e., the three pooled fractions from the gel-filtration column with the highest amount of carbohydrate, had a d.p. of 75 +/- 4 for the amylose complex with butyl alcohol, 90 +/- 3 for those with tert-butyl alcohol and tetrachloroethane, and 123 +/- 2 for that with 1-naphthol. These d.p. values correspond to helices of six residues per turn with a folding length of 10 nm, seven residues per turn with a folding length of 10 nm, and eight residues per turn with a folding length of 12 nm (or nine residues per turn with a folding length of 10 nm), respectively. Acid hydrolysis of retrograded amylose gave a resistant fragment having an average d.p. of 32, human-salivary and porcine-pancreatic alpha amylases gave a resistant fragment of d.p. 43, and Bacillus subtilis alpha amylase gave a resistant fragment of d.p. 50. A structure for retrograded amylose is proposed in which there are crystalline, double-helical regions that are 10 nm long, interspersed with amorphous regions. The amorphous regions are hydrolyzed by acid and by alpha amylases, leaving the crystalline regions intact. The differences in the sizes of the resistant amylodextrins depend on the differences in the specificities of the hydrolyzing agents: acid hydrolyzes right up to the edge of the crystalline region, whereas the alpha amylases hydrolyze up to some point several D-glucosyl residues away from the crystalline region, leaving "stubs" on the ends of the amylodextrins whose sizes are dependent on the sizes of the binding sites of the individual alpha amylases.(ABSTRACT TRUNCATED AT 400 WORDS)
使用人唾液淀粉酶、猪胰淀粉酶和枯草芽孢杆菌α淀粉酶,研究直链淀粉 - V与丁醇、叔丁醇、1,1,2,2 - 四氯乙烷和1 - 萘酚形成的复合物以及老化直链淀粉的结构。α淀粉酶水解堆积螺旋片层表面的无定形折叠区域,形成抗性淀粉糊精片段。它们的聚合度(d.p.)与螺旋直径和链的折叠长度相对应。将抗性片段在Bio - Gel A - 0.5m柱上进行分级分离。人唾液淀粉酶和猪胰淀粉酶水解产物的凝胶过滤得到抗性片段,其峰值级分,即凝胶过滤柱中碳水化合物含量最高的三个合并级分,对于直链淀粉与丁醇形成的复合物,d.p.为75±4;对于与叔丁醇和四氯乙烷形成的复合物,d.p.为90±3;对于与1 - 萘酚形成的复合物,d.p.为123±2。这些d.p.值分别对应于每圈六个残基且折叠长度为10nm的螺旋、每圈七个残基且折叠长度为10nm的螺旋以及每圈八个残基且折叠长度为12nm(或每圈九个残基且折叠长度为10nm)的螺旋。老化直链淀粉的酸水解产生平均d.p.为32的抗性片段,人唾液淀粉酶和猪胰淀粉酶产生d.p.为43的抗性片段,枯草芽孢杆菌α淀粉酶产生d.p.为50的抗性片段。提出了一种老化直链淀粉的结构,其中存在10nm长的结晶双螺旋区域,其间散布有无定形区域。无定形区域可被酸和α淀粉酶水解,而结晶区域保持完整。抗性淀粉糊精大小的差异取决于水解剂特异性的差异:酸一直水解到结晶区域的边缘,而α淀粉酶水解到距离结晶区域几个D - 葡萄糖基残基的某个点,在淀粉糊精末端留下“残端”,其大小取决于各个α淀粉酶结合位点的大小。(摘要截于400字)