Suppr超能文献

组蛋白H5中央球状结构域在染色质结构中的作用。

The role of the central globular domain of histone H5 in chromatin structure.

作者信息

Chan D C, Biard-Roche J, Gorka C, Girardet J L, Lawrence J J, Piette L I

机构信息

Cancer Center of Hawaii, University of Hawaii, Honolulu 96813.

出版信息

J Biomol Struct Dyn. 1984 Oct;2(2):319-32. doi: 10.1080/07391102.1984.10507570.

Abstract

Histone H5 contains three tyrosines in the central, apolar region of the molecule. All three tyrosines can be spin labeled at low ionic strength. When the central globular domain is folded at high ionic strength, only one tyrosine becomes accessible to the imidazole spin label. Spin labeling the buried tyrosines prevents the folding of the globular structure, which, in turn, affects the proper binding of the H5 molecule to stripped chromatin. Chromatin complexes reconstituted from such an extensively modified H5 molecule show a weaker protection of the 168 base pair chromatosome during nuclease digestion. However, when only the surface tyrosine of the H5 molecule is labeled, such a molecule can still bind correctly to stripped chromatin, yielding a complex very similar to that of native chromatin. Our data supports the idea that not just the presence of the linker histone H5, but the presence of an intact H5 molecule with a folded, globular central domain in essential in the recognition of its specific binding sites on the nucleosomes. Our data also show that during the chromatin condensation process, the tumbling environment of the spin label attached to the surface tyrosine in the H5 molecule is not greatly hindered but remains partially mobile. This suggests that either the labeled domain of the H5 molecule is not directly involved in the condensation process or the formation of the higher-order chromatin structure does not result is a more viscous or tighter environment around the spin label. The folded globular domain of H5 molecule serves in stabilizing the nucleosome structure, as well as the higher-order chromatin structure.

摘要

组蛋白H5在分子的中央非极性区域含有三个酪氨酸。在低离子强度下,所有这三个酪氨酸都可以进行自旋标记。当中央球状结构域在高离子强度下折叠时,咪唑自旋标记只能接近一个酪氨酸。对埋藏的酪氨酸进行自旋标记会阻止球状结构的折叠,进而影响H5分子与脱蛋白染色质的正确结合。由这种经过广泛修饰的H5分子重构的染色质复合物在核酸酶消化过程中对168个碱基对的核小体的保护作用较弱。然而,当仅对H5分子的表面酪氨酸进行标记时,这样的分子仍能正确结合到脱蛋白染色质上,产生与天然染色质非常相似的复合物。我们的数据支持这样一种观点,即不仅连接组蛋白H5的存在很重要,而且具有折叠的球状中央结构域的完整H5分子的存在对于识别其在核小体上的特异性结合位点至关重要。我们的数据还表明,在染色质凝聚过程中,连接到H5分子表面酪氨酸上的自旋标记的翻滚环境没有受到很大阻碍,而是仍然部分可移动。这表明要么H5分子的标记结构域没有直接参与凝聚过程,要么高阶染色质结构的形成不会导致自旋标记周围环境更粘稠或更紧密。H5分子的折叠球状结构域有助于稳定核小体结构以及高阶染色质结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验