Suppr超能文献

Electrophysiologic effects of propafenone on canine ischemic cardiac cells.

作者信息

Zeiler R H, Gough W B, El-Sherif N

出版信息

Am J Cardiol. 1984 Aug 1;54(3):424-9. doi: 10.1016/0002-9149(84)90210-8.

Abstract

The electrophysiologic effects of propafenone were studied by conventional microelectrode techniques in ischemic myocardial and Purkinje fibers from 1-day-old myocardial infarction in the dog. Propafenone reduced the amplitude and rate of rise of normal myocardial and Purkinje action potentials and had little effect on the resting potential. In the control state, both ischemic myocardial and Purkinje fibers had reduced resting potential, action potential amplitude and upstroke velocity. These fibers were more susceptible to the depressant effects of propafenone than normal fibers. Ischemic myocardial fibers were particularly sensitive to the actions of propafenone that resulted in marked depression of action potential characteristics, with little effect on resting potential. These changes resulted in cycle length-dependent conduction disorders in ischemic epicardial preparations. However, in ischemic endocardial preparations in which triggered activity could be initiated, propafenone reversibly suppressed the triggered activity. Termination of the triggered activity was preceded by slowing of the rate, which was attributed to a decrease in the rate of rise of the delayed afterdepolarizations. This activity terminated when the delayed afterdepolarization failed to attain threshold potential. This study suggests that propafenone has a membrane-anesthetic effect, with the abnormal fast channel in ischemic cells being more sensitive; propafenone depresses delayed afterdepolarizations in ischemic Purkinje fibers; and the actions of propafenone could result in an antiarrhythmic effect in vivo on both reentrant ventricular rhythms in ischemic myocardium and triggered rhythms in ischemic Purkinje fibers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验