Muller D, Decock-Le Révérend B, Sarkar B
J Inorg Biochem. 1984 Jul;21(3):215-26. doi: 10.1016/0162-0134(84)83005-6.
Unlike human serum albumin (HSA), dog serum albumin (DSA) does not possess the characteristics of the specific first binding site for Cu(II). In DSA, the important histidine residue in the third position, responsible for the Cu(II)-binding specificity in HSA, is replaced by a tyrosine residue. In order to study the influence of the tyrosine residue in the third position of DSA, a simple model of the NH2-terminal native sequence tripeptide of DSA, glycylglycyl-L-tyrosine-N-methylamide (GGTNMA) was synthesized and its Cu(II)-binding properties studied by analytical potentiometry, spectrophotometry, CD, and NMR spectroscopy. The species analysis indicated the existence of five mono-complexes at different protonation states: MHA, MA, MH-1A, MH-2A, MH-3A, and only one bis-complex MH-2A-2. The complexing ability of GGTNMA to Cu(II) was found to be weaker than that of the Cu(II) binding peptide models of HSA. The visible absorption spectra of Cu(II)-GGTNMA complexes are similar to those observed in the case of DSA-Cu(II) complexes. The weaker binding and the spectral properties of Cu(II)-GGTNMA complexes are consistent with less specific Cu(II)-binding properties of the peptide of this sequence similar to what was noted with DSA. CD results are in excellent agreement with species analysis and visible spectra where it is clearly evident that Cu(II) binds to GGTNMA starting from the alpha-NH2 group and step by step to deprotonated amide nitrogens as the pH is raised. The absence of any charge transfer band around 400 nm strongly indicates that Cu(II) does not bind to the phenolate group. Furthermore, NMR results are consistent with the noninvolvement of the tyrosine residue of GGTNMA in Cu(II) complexation. Thus, it is clear that the low Cu(II)-binding affinity of DSA is due to the genetic substitution of tyrosine for histidine at the NH2-terminal region of the protein.
与人类血清白蛋白(HSA)不同,犬血清白蛋白(DSA)不具备与Cu(II)特异性结合的第一个位点的特征。在DSA中,负责HSA中Cu(II)结合特异性的第三位重要组氨酸残基被酪氨酸残基取代。为了研究DSA第三位酪氨酸残基的影响,合成了DSA氨基末端天然序列三肽的简单模型,甘氨酰甘氨酰-L-酪氨酸-N-甲基酰胺(GGTNMA),并通过分析电位滴定法、分光光度法、圆二色光谱法和核磁共振光谱法研究了其与Cu(II)的结合特性。物种分析表明存在处于不同质子化状态的五种单核配合物:MHA、MA、MH-1A、MH-2A、MH-3A,以及仅一种双核配合物MH-2A-2。发现GGTNMA与Cu(II)的络合能力弱于HSA的Cu(II)结合肽模型。Cu(II)-GGTNMA配合物的可见吸收光谱与DSA-Cu(II)配合物的情况相似。Cu(II)-GGTNMA配合物较弱的结合能力和光谱特性与该序列肽的较低特异性Cu(II)结合特性一致,这与DSA的情况类似。圆二色光谱结果与物种分析和可见光谱非常吻合,很明显随着pH值升高,Cu(II)从α-NH2基团开始与GGTNMA结合,并逐步与去质子化的酰胺氮结合。在400nm左右没有任何电荷转移带强烈表明Cu(II)不与酚盐基团结合。此外,核磁共振结果与GGTNMA的酪氨酸残基不参与Cu(II)络合一致。因此,很明显DSA对Cu(II)的低结合亲和力是由于蛋白质氨基末端区域组氨酸被酪氨酸的基因替代。