Dawson D V, Elston R C
Am J Med Genet. 1984 Jul;18(3):435-48. doi: 10.1002/ajmg.1320180313.
In genetic analysis of pedigree data, nonrandom sampling occurs commonly and appropriate adjustments for the ascertainment procedure are necessary for the correct interpretation of results. In this paper we consider ascertainment models for the situation in which proband selection is made on the basis of one trait, but the desired object of analysis is another related trait for which the individuals in the pedigree also are measured. The ascertainment function corresponding to the most useful bivariate form, that involving two correlated quantitative traits, is described explicitly under suitable assumptions. As its form is mathematically intractable for purposes of pedigree analysis, an approximation is developed. Such ascertainment models accomplish corrections for ascertainment while permitting adjustment for covariates, analysis of traits correlated with the trait used in selection, and multivariate analysis of nonrandomly sampled pedigrees using linear combinations of traits.
在系谱数据的遗传分析中,非随机抽样很常见,因此必须对确定程序进行适当调整,才能正确解释结果。在本文中,我们考虑这样一种情况的确定模型:先证者的选择基于一个性状,但期望的分析对象是另一个相关性状,系谱中的个体也对该性状进行了测量。在适当的假设下,明确描述了与最有用的双变量形式相对应的确定函数,该形式涉及两个相关的数量性状。由于其形式在系谱分析中数学上难以处理,因此开发了一种近似方法。这种确定模型在进行确定校正的同时,允许对协变量进行调整,分析与选择中使用的性状相关的性状,以及使用性状的线性组合对非随机抽样的系谱进行多变量分析。