Suppr超能文献

临床试验中非线性模型的治疗分配:逻辑模型

Treatment allocation for nonlinear models in clinical trials: the logistic model.

作者信息

Begg C B, Kalish L A

出版信息

Biometrics. 1984 Jun;40(2):409-20.

PMID:6487725
Abstract

Many clinical trials have a binary outcome variable. If covariate adjustment is necessary in the analysis, the logistic-regression model is frequently used. Optimal designs for allocating treatments for this model, or for any nonlinear or heteroscedastic model, are generally unbalanced with regard to overall treatment totals and totals within strata. However, all treatment-allocation methods that have been recommended for clinical trials in the literature are designed to balance treatments within strata, either directly or asymptotically. In this paper, the efficiencies of balanced sequential allocation schemes are measured relative to sequential Ds-optimal designs for the logistic model, using as examples completed trials conducted by the Eastern Cooperative Oncology Group and systematic simulations. The results demonstrate that stratified, balanced designs are quite efficient, in general. However, complete randomization is frequently inefficient, and will occasionally result in a trial that is very inefficient.

摘要

许多临床试验都有一个二元结果变量。如果在分析中需要进行协变量调整,通常会使用逻辑回归模型。针对该模型或任何非线性或异方差模型分配治疗的最优设计,在总体治疗总数和各层内总数方面通常是不平衡的。然而,文献中推荐的所有用于临床试验的治疗分配方法,都是直接或渐近地设计为使各层内的治疗保持平衡。在本文中,以东部肿瘤协作组进行的已完成试验和系统模拟为例,相对于逻辑模型的序贯D - 最优设计,来衡量平衡序贯分配方案的效率。结果表明,一般来说,分层平衡设计相当有效。然而,完全随机化常常效率低下,偶尔会导致一个效率极低的试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验