Angle C R, Marcus A, Cheng I H, McIntire M S
Environ Res. 1984 Oct;35(1):160-70. doi: 10.1016/0013-9351(84)90123-3.
The majority of experimental and population studies of blood lead (PbB) and environmental lead, including the Omaha study, have utilized the Goldsmith-Hexter log-log or power function model. Comparison was made of the log-log model and a linear model of total exposure to describe the Omaha Study of 1074 PbBs from children ages 1-18 years as related to air (PbA), soil (PbS), and housedust (PbHD) lead. The data fit of the linear model was statistically equivalent to the power model and the predicted curves were biologically more plausible. The linear model avoids the mathematical limitations of the power model which predicts PbB zero at PbA zero. From the Omaha data, this model, ln PbB = ln (beta 0 + B1 PbA + B2 PbS + beta 3 PbHD) predicts that PbB increases 1.92 micrograms/dl as PbA increases 1.0 microgram/m3. Since PbS and PbHD increase with PbA, however, the increases in total exposure predict a PbB increase of 4-5 micrograms/dl as PbA increases 1.0 microgram/m3.
包括奥马哈研究在内,大多数关于血铅(PbB)和环境铅的实验研究及人群研究都采用了戈德史密斯 - 赫克斯特双对数或幂函数模型。对双对数模型和总暴露的线性模型进行了比较,以描述奥马哈对1 - 18岁儿童的1074份血铅水平与空气(PbA)、土壤(PbS)和室内灰尘(PbHD)中的铅之间关系的研究。线性模型的数据拟合在统计学上与幂模型相当,且预测曲线在生物学上更合理。线性模型避免了幂模型在数学上的局限性,幂模型在空气铅含量为零时预测血铅为零。根据奥马哈的数据,该模型ln PbB = ln(β0 + B1 PbA + B2 PbS + β3 PbHD)预测,当空气铅含量每增加1.0微克/立方米时,血铅水平增加1.92微克/分升。然而,由于土壤铅和室内灰尘铅含量随空气铅含量增加,总暴露量的增加预测当空气铅含量每增加1.0微克/立方米时,血铅水平增加4 - 5微克/分升。