Suppr超能文献

速率敏感反馈系统的稳态能力:数学模型

Homeostatic capability of rate-sensitive feedback system: mathematical model.

作者信息

Okamoto M, Hayashi K

出版信息

Am J Physiol. 1984 Nov;247(5 Pt 2):R927-31. doi: 10.1152/ajpregu.1984.247.5.R927.

Abstract

We have predicted the mathematical model of rate-sensitive feedback control system and have investigated its homeostatic capability by using computer simulations. The results are summarized as follows. By installing a cyclic enzyme system as feedback control element, we could assume the rate-sensitive feedback system at molecular level. This type of feedback had realistic constant-value control capability for external perturbations. This feedback system was more effective for the exclusion of perturbation than was the concentration-sensitive feedback. A large-loop feedback was more stable for perturbation than was short-loop feedback. In sequential feedback system, every key enzyme sensitive to feedback control had to vary the activity at same time for the system to keep homeostasis.

摘要

我们预测了速率敏感反馈控制系统的数学模型,并通过计算机模拟研究了其稳态调节能力。结果总结如下。通过安装一个循环酶系统作为反馈控制元件,我们可以在分子水平上假设速率敏感反馈系统。这种类型的反馈对外部干扰具有实际的恒定值控制能力。与浓度敏感反馈相比,这种反馈系统在排除干扰方面更有效。大环反馈比短环反馈对干扰更稳定。在顺序反馈系统中,每个对反馈控制敏感的关键酶必须同时改变活性,系统才能保持稳态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验