Suppr超能文献

代谢网络中动力学与控制的数学建模。II. 简单二聚体酶

Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.

作者信息

Palsson B O, Jamier R, Lightfoot E N

出版信息

J Theor Biol. 1984 Nov 21;111(2):303-21. doi: 10.1016/s0022-5193(84)80212-x.

Abstract

The dynamics of enzyme cooperativity are examined by studying a homotropic dimeric enzyme with identical reaction sites, both of which follow irreversible Michaelis-Menten kinetics. The problem is approached via scaling and linearization of the governing mass action kinetic equations. Homotropic interaction between the two sites are found to depend on three dimensionless groups, two for the substrate binding step and one for the chemical transformation. The interaction between the two reaction sites is shown capable of producing dynamic behavior qualitatively different from that of a simple Michaelis-Menten system; when the two sites interact to increase enzymatic activity over that of two independent monomeric enzymes (positive cooperativity) damped oscillatory behavior is possible, and for negative cooperativity in the chemical transformation step a multiplicity of steady states can occur, with one state unstable and leading to runaway behavior. Linear analysis gives significant insight into system dynamics, and their parametric sensitivity, and a way to identify regions of the parameter space where the approximate quasi-stationary and quasi-equilibrium analyses are appropriate.

摘要

通过研究具有相同反应位点的同促二聚体酶来考察酶协同作用的动力学,这两个反应位点均遵循不可逆的米氏动力学。该问题通过对控制质量作用动力学方程进行标度和线性化来解决。发现两个位点之间的同促相互作用取决于三个无量纲基团,其中两个用于底物结合步骤,一个用于化学转化。结果表明,两个反应位点之间的相互作用能够产生与简单米氏系统在性质上不同的动力学行为;当两个位点相互作用以增加酶活性(相对于两个独立的单体酶)时(正协同作用),可能会出现阻尼振荡行为,而在化学转化步骤中存在负协同作用时,可能会出现多个稳态,其中一个状态不稳定并导致失控行为。线性分析为系统动力学及其参数敏感性提供了重要见解,还提供了一种识别参数空间区域的方法,在这些区域中近似准稳态和准平衡分析是合适的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验