Roy R R, Bello M A, Powell P L, Simpson D R
Am J Anat. 1984 Nov;171(3):285-93. doi: 10.1002/aja.1001710305.
Because the architectural and biochemical properties of skeletal muscle dictate its force, velocity, and displacement properties, the major extensors (triceps brachii) and flexors (biceps brachii, brachialis, and brachioradialis) of the elbow in a primate (cynomolgus, monkey) were studied. Functional cross-sectional areas (CSA) were calculated from muscle mass, mean fiber length (normalized to a 2.20 microns sarcomere length), and angle of fiber pinnation measurements from each muscle. Fiber-type distributions were determined and used as a gross index of the biochemical capacities of the muscle. The extensor group had a shorter mean fiber length (31 vs. 47 mm), a larger CSA (13 vs. 8 cm2), and a higher overall percentage of slow-twitch fibers (47 vs. 26%). Consequently, the elbow extensors had a relatively greater potential for force production and force maintenance than the flexors. In contrast, the flexors were designed to optimize their length-velocity potentials; i.e., they had relatively long fibers and a higher fast-twitch fiber composition than the extensors. These morphologic differences between antagonistic muscle groups should be considered when evaluating the motor control mechanisms regulating reciprocal movements about the elbow.