Suppr超能文献

Mechanism for nucleotide incorporation into steady-state microtubules.

作者信息

Caplow M, Brylawski B P, Reid R

出版信息

Biochemistry. 1984 Dec 18;23(26):6745-52. doi: 10.1021/bi00321a071.

Abstract

We have extended our previous theoretical analysis of the kinetics for radioactive GTP incorporation into steady-state microtubules [Zeeberg, B., Reid, R., & Caplow, M. (1980) J. Biol. Chem. 255, 9891-9899] to include the effects of a kinetic barrier for equilibration of labeled GTP with the tubulin E site. This binding has been found to be relatively slow; the half-time for GTP dissociation is approximately 25 s (k = 0.028 s-1). The slow binding of radioactive GTP apparently accounts for the following observations: (a) more radioactive nucleotide is incorporated into steady-state microtubules in the first 20 s when tubulin-[3H]GTP is used in a pulse than when [3H]GTP is used; (b) when steady-state microtubules are pulsed for 20 s with tubulin-[3H]GTP and then chased with excess nonradioactive GTP, radioactive nucleotide incorporation is not stopped immediately. Quantitative analysis of these results indicates that our steady-state microtubules do not contain significant amounts (greater than 1%) of GDP or GTP which can exchange with added GTP. The principal route for labeled nucleotide incorporation appears to be from tubulin-[3H]GTP subunit uptake, by diffusional and treadmilling processes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验