Suppr超能文献

Ethanol-induced increase in NADH-dependent monooxygenase activities of hepatic microsomal cytochrome P-450.

作者信息

Gadeholt G, Mørland J

出版信息

Alcohol. 1984 Mar-Apr;1(2):119-24. doi: 10.1016/0741-8329(84)90066-1.

Abstract

NADH-dependent hepatic microsomal monooxygenase activities were measured in the presence and absence of NADPH in material from adult male rats given ethanol in a liquid diet. Controls were given a liquid control diet (control group; lipid as substitute for ethanol) or rat chow (untreated group). Ethanol feeding elevated microsomal aniline hydroxylase activity and did not change ethylmorphine N-demethylase activity. NADH supported 21-24% of the NADPH-driven aniline hydroxylase activity in ethanol, control and untreated microsomes, but only about 6% of ethylmorphine N-demethylase activity. In the presence of NADPH, NADH gave 13-14% increase in aniline hydroxylase activity in microsomes from control and untreated rats, but only 3% in ethanol microsomes. In contrast, the presence of NADPH increased many times the effect of NADH on ethylmorphine N-demethylation with no striking difference between the groups. In another series of experiments, demethylation of 4-nitroanisole was elevated after ethanol feeding (4-fold with NADPH; 5-fold with NADH) and phenobarbital treatment (8-fold with NADPH, 2-fold with NADH). In the ethanol-induced activity, NADH and NADPH were less than additive. In the control and untreated and the phenobarbital-induced activities, NADH and NADPH were additive or possibly synergistic in driving the activity. Both ethanol and phenobarbital elevated cytochrome P-450; ethanol also elevated cytochrome b5 measured as NADH-reducible cytochrome.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

相似文献

2
Influence of chronic ethanol consumption on hamster liver microsomal O-dealkylase activities and cytochrome b5 content.
Biochem Pharmacol. 1985 Dec 15;34(24):4263-7. doi: 10.1016/0006-2952(85)90282-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验