Suppr超能文献

Rheological properties and wall structures of large veins.

作者信息

Hasegawa M

出版信息

Biorheology. 1983;20(5):531-45. doi: 10.3233/bir-1983-20510.

Abstract

The static and dynamic viscoelastic properties were studied of longitudinal and circumferential strips excised from various large veins of dogs. The mechanical behavior in longitudinal direction could be regarded as elastic, while that in circumferential direction was highly viscoelastic. No distinct regionality was observed in either of the longitudinal and the circumferential groups. Noradrenaline and papaverine did not alter the elastic behavior of the longitudinal strips. In circumferential strips, however, noradrenaline caused a considerable decrease in stress relaxation and some steepening in the slope of the upper limb of hysteresis loop. Papaverine did not affect the circumferential characteristics. These findings suggest the dominant contribution of smooth muscle tone to the circumferential characteristics of venous walls. Pretreatment with formic acid abolished the occurrence of stress relaxation in circumferential direction but produced no change in the longitudinal behavior. This indicates that elastin fibers may be a principal determinant of the elastic behavior in longitudinal direction and that a residual tension observed in stress-relaxation tests of circumferential strips may be due to stretched elastin fibers. The elastic moduli of elastase pretreated venous walls were in the order of 10(8) dynes/cm2, about 1000 times higher than those of the control. Accordingly, collagen fibers seemed not to play any appreciable role in the rheological behavior of venous walls under physiological conditions. This inference was supported by histological observations of venous walls under unstretched and stretched states. Models were proposed in regard to the architecture of the fibrous elements in the venous walls.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验