Suppr超能文献

红芸豆α-淀粉酶抑制剂与α-淀粉酶络合机制的某些方面。

Some aspects of the mechanism of complexation of red kidney bean alpha-amylase inhibitor and alpha-amylase.

作者信息

Wilcox E R, Whitaker J R

出版信息

Biochemistry. 1984 Apr 10;23(8):1783-91. doi: 10.1021/bi00303a031.

Abstract

Bovine pancreatic alpha-amylase binds 1 mol of acarbose (a carbohydrate alpha-amylase inhibitor) per mol at the active site and also binds acarbose nonspecifically. The red kidney bean alpha-amylase inhibitor-bovine pancreatic alpha-amylase complex retained nonspecific binding for acarbose only. Binding of p-nitrophenyl alpha-D-maltoside to the final complex of red kidney bean alpha-amylase inhibitor and bovine pancreatic alpha-amylase has a beta Ks (Ks') value that is 3.4-fold greater than the Ks (16 mM) of alpha-amylase for p-nitrophenyl alpha-D-maltoside alone. The initial complex of alpha-amylase and inhibitor apparently hydrolyzes this substrate as rapidly as alpha-amylase alone. The complex retains affinity for substrates and competitive inhibitors, which, when present in high concentrations, cause dissociation of the complex. Maltose (0.5 M), a competitive inhibitor of alpha-amylase, caused dissociation of the red kidney bean alpha-amylase inhibitor--alpha-amylase complex. Interaction between red kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor and porcine pancreatic alpha-amylase proceeds through two steps. The first step has a Keq of 3.1 X 10(-5) M. The second step (unimolecular; first order) has a forward rate constant of 3.05 min-1 at pH 6.9 and 30 degrees C. alpha-Amylase inhibitor combines with alpha-amylase, in the presence of p-nitrophenyl alpha-D-maltoside, noncompetitively. On the basis of the data presented, it is likely that alpha-amylase is inactivated by the alpha-amylase inhibitor through a conformational change. A kinetic model, in the presence and absence of substrate, is described for noncompetitive, slow, tight-binding inhibitors that proceed through two steps.

摘要

牛胰α-淀粉酶在活性位点每摩尔结合1摩尔阿卡波糖(一种碳水化合物α-淀粉酶抑制剂),并且也能非特异性结合阿卡波糖。菜豆α-淀粉酶抑制剂 - 牛胰α-淀粉酶复合物仅保留对阿卡波糖的非特异性结合。对硝基苯基α-D-麦芽糖苷与菜豆α-淀粉酶抑制剂和牛胰α-淀粉酶的最终复合物的结合具有βKs(Ks')值,该值比α-淀粉酶单独对硝基苯基α-D-麦芽糖苷的Ks(16 mM)大3.4倍。α-淀粉酶和抑制剂的初始复合物显然与单独的α-淀粉酶一样快速地水解该底物。该复合物对底物和竞争性抑制剂保持亲和力,当它们以高浓度存在时会导致复合物解离。麦芽糖(0.5 M),一种α-淀粉酶的竞争性抑制剂,导致菜豆α-淀粉酶抑制剂 - α-淀粉酶复合物解离。菜豆(菜豆属)α-淀粉酶抑制剂与猪胰α-淀粉酶之间的相互作用通过两个步骤进行。第一步的Keq为3.1×10⁻⁵ M。第二步(单分子;一级)在pH 6.9和30℃下的正向速率常数为3.05 min⁻¹。在对硝基苯基α-D-麦芽糖苷存在下,α-淀粉酶抑制剂与α-淀粉酶非竞争性结合。根据所提供的数据,α-淀粉酶很可能通过构象变化被α-淀粉酶抑制剂灭活。描述了一种在有底物和无底物情况下通过两个步骤进行的非竞争性、缓慢、紧密结合抑制剂的动力学模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验