Alkazaz M, Desseaux V, Marchis-Mouren G, Payan F, Forest E, Santimone M
Laboratoire de Biochimie et Biologie de la Nutrition URA-CNRS 1820, Faculté des Sciences et Techniques de St Jérôme, Université d'Aix-Marseille, France.
Eur J Biochem. 1996 Nov 1;241(3):787-96. doi: 10.1111/j.1432-1033.1996.00787.x.
Kinetics of inhibition of the two porcine pancreatic alpha-amylase components (PPA I and PPA II) by acarbose were performed using reduced DP18-maltodextrin and amylose as substrates. Similar Line-weaver-Burk primary plots were obtained. Two mixed non-competitive models are proposed. X-ray crystallographic data [Qian, M., Buisson, G., Duée. E., Haser, R. & Payan, F. (1994) Biochemistry 33, 6284-6294] are in support of the mixed non-competitive inhibition model which involves abortive complexes. Secondary plots are different; inhibition of reduced DP18-maltodextrin hydrolysis gives straight-lines plots while amylose gives parabolic curves. These results, confirmed by Dixon-plot analyses, allow us to postulate that, in inhibition of reduced DP18-maltodextrin hydrolysis, one molecule of acarbose is bound/ amylase molecule. In contrast, using amylose as a substrate, two molecules of acarbose are bound. These kinetically determined binding sites might correspond to surface sites found by X-ray crystallography [Qian, M., Haser, R. & Payan, F. (1995) Protein Sci. 4, 747-755]; the glucose site close to the active site and the maltose site, 2 nm away. In conclusion, no significant difference between PPA I and PPA II has been observed, either from molecular mass or from kinetic behaviours; this suggests multiple forms of the enzyme. A general mechanism of PPA action is proposed; in addition to the active site, long-chain substrate hydrolysis requires the glucose-binding site and the maltose-binding site, while only one site is necessary for the hydrolysis of short chain substrate.
以还原型 DP18 - 麦芽糖糊精和直链淀粉为底物,研究了阿卡波糖对两种猪胰α - 淀粉酶组分(PPA I 和 PPA II)的抑制动力学。得到了相似的林 - 贝氏初始图。提出了两种混合型非竞争性模型。X 射线晶体学数据[钱,M.,比松,G.,迪厄,E.,哈泽尔,R. & 帕扬,F.(1994)《生物化学》33,6284 - 6294]支持涉及流产复合物的混合型非竞争性抑制模型。次级图不同;还原型 DP18 - 麦芽糖糊精水解的抑制给出直线图,而直链淀粉给出抛物线曲线。经狄克逊图分析证实的这些结果,使我们推测,在还原型 DP18 - 麦芽糖糊精水解的抑制中,一分子阿卡波糖与一分子淀粉酶结合。相比之下,以直链淀粉为底物时,两分子阿卡波糖结合。这些动力学确定的结合位点可能对应于 X 射线晶体学[钱,M.,哈泽尔,R. & 帕扬,F.(1995)《蛋白质科学》4,747 - 755]发现的表面位点;靠近活性位点的葡萄糖位点和相距 2 nm 的麦芽糖位点。总之,无论是分子量还是动力学行为,PPA I 和 PPA II 之间均未观察到显著差异;这表明该酶有多种形式。提出了 PPA 作用的一般机制;除活性位点外,长链底物水解需要葡萄糖结合位点和麦芽糖结合位点,而短链底物水解仅需一个位点。