Armarego W L, Randles D, Taguchi H
Eur J Biochem. 1983 Oct 3;135(3):393-403. doi: 10.1111/j.1432-1033.1983.tb07666.x.
The aerobic degradation of 5,6,7,8-tetrahydrobiopterin at neutral pH is catalysed by peroxidase (EC 1.11.1.7) and provides quinonoid 7,8-dihydro(6H)biopterin which readily loses the side chain to yield 7,8-dihydro(3H)pterin. The latter is in equilibrium with trace amounts of 6-hydroxy-5,6,7,8-tetrahydropterin (covalent hydrate) which is irreversibly oxidised to quinonoid 6-hydroxy-7,8-dihydro(6H)pterin, and this finally rearranges to 7,8-dihydroxanthopterin. Spectroscopic evidence (ultraviolet, 1H NMR and 13C NMR) is presented for the reversible addition of water across the 5,6-double bond of 7,8-dihydro(3H)pterin. The intermediate quinonoid 6-hydroxy-7,8-dihydro(6H)pterin is a good substrate for dihydropteridine reductase (EC 1.6.99.7) with a Km of 16.3 microM and kcat of 22.5 s-1. The rate of aerobic degradation (oxidation and loss of the side chain) of natural (6R)-5,6,7,8-tetrahydrobiopterin is several times slower than the rate for the unnatural (6S) isomer. By using a modified assay procedure the kinetic parameters for dihydropteridine reductase are as follows: with (6R)-7,8-dihydro(6H)biopterin Km = 1.3 microM and kcat = 22.8 s-1; with (6S)-7,8-dihydro(6H)biopterin Km = 13.5 microM and kcat = 51.6 s-1; and with (6RS)-7,8-dihydro(6H)neopterin Km = 19.2 microM and kcat = 116 s-1.
在中性pH条件下,过氧化物酶(EC 1.11.1.7)催化5,6,7,8-四氢生物蝶呤的需氧降解,生成醌型7,8-二氢(6H)生物蝶呤,后者很容易失去侧链生成7,8-二氢(3H)蝶呤。后者与痕量的6-羟基-5,6,7,8-四氢蝶呤(共价水合物)处于平衡状态,该共价水合物不可逆地氧化为醌型6-羟基-7,8-二氢(6H)生物蝶呤,最终重排为7,8-二羟基黄蝶呤。给出了光谱证据(紫外、1H NMR和13C NMR),证明水可逆地加成到7,8-二氢(3H)蝶呤的5,6-双键上。中间产物醌型6-羟基-7,8-二氢(6H)生物蝶呤是二氢蝶啶还原酶(EC 1.6.99.7)的良好底物,Km为16.3 microM,kcat为22.5 s-1。天然(6R)-5,6,7,8-四氢生物蝶呤的需氧降解速率(氧化和侧链损失)比非天然(6S)异构体的速率慢几倍。通过使用改进的测定方法,二氢蝶啶还原酶的动力学参数如下:对于(6R)-7,8-二氢(6H)生物蝶呤,Km = 1.3 microM,kcat = 22.8 s-1;对于(6S)-7,8-二氢(6H)生物蝶呤,Km = 13.5 microM,kcat = 51.6 s-1;对于(6RS)-7,8-二氢(6H)新蝶呤,Km = 19.2 microM,kcat = 116 s-1。