Dacheux J L, Voglmayr J K
Biol Reprod. 1983 Nov;29(4):1033-46. doi: 10.1095/biolreprod29.4.1033.
To study successive surface changes of maturing ram spermatozoa, we determined the 125I-labeling patterns of testicular spermatozoa and of spermatozoa from 10 consecutive regions of the epididymis. Overall, three phases of cell surface transformations are distinguishable: Phase I occurs in the caput epididymidis and it is characterized by a series of rapid surface changes. The most striking surface transformations occur during transport of spermatozoa from the testis into the proximal caput epididymidis. All major surface components in the zones 78 to 115 kd disappear or are lost from the surface of testicular spermatozoa. Concurrently, several low molecular weight components (17 to 65 kd) appear or become increasingly accessible to 125I. Phase II represents a period of relative quiescence which is confined to the corpus epididymidis. Phase III takes place in the cauda epididymidis where several existing (97, 65 and 41 kd) and new (24 kd) proteins become the predominant features of the sperm cell surface. Electrophoretic analyses of luminal fluid proteins from corresponding regions of the testis and epididymis also show that the most striking changes occur between the rete testis and the proximal caput epididymidis. No rete testis fluid (RTF) components are detectable in luminal fluid of the proximal caput epididymidis. In the epididymis, however, fluid proteins are more persistent than sperm surface components. Several major fluid components (i.e., 95, 76, 21.5, 19.5 and 16 kd) persist throughout the epididymis. Other fluid proteins are of a more transient nature as, for example, a 25 kd molecular weight component (regions E1 through E6) or the 180, 62, 37 and 32 kd components in regions E4 to E10, the 270, 115 and 105 kd proteins in regions E6 to E10 and the 360, 145, 125 and 62 kd molecular weight components in regions E7 to E10. No direct relationships could be established between intrinsic surface components and exogenous fluid proteins from corresponding regions of the testis and epididymis. These results demonstrate a much greater complexity of sequential surface transformation in maturing epididymal spermatozoa than was predictable from our earlier studies of testicular and ejaculated spermatozoa. Apparently, ram spermatozoa must undergo extensive surface renovations in the caput epididymidis before the surface protein pattern typical of mature spermatozoa slowly develops.
为了研究成熟公羊精子的连续表面变化,我们测定了睾丸精子以及附睾10个连续区域精子的125I标记模式。总体而言,细胞表面转化可分为三个阶段:第一阶段发生在附睾头,其特征是一系列快速的表面变化。最显著的表面转化发生在精子从睾丸运输到附睾头近端的过程中。睾丸精子表面78至115kd区域的所有主要表面成分消失或丢失。同时,几种低分子量成分(17至65kd)出现或变得越来越容易被125I标记。第二阶段是相对静止期,局限于附睾体。第三阶段发生在附睾尾,几种现有的(97、65和41kd)和新的(24kd)蛋白质成为精子细胞表面的主要特征。对睾丸和附睾相应区域管腔液蛋白质的电泳分析还表明,最显著的变化发生在睾丸网和附睾头近端之间。在附睾头近端的管腔液中检测不到睾丸网液(RTF)成分。然而,在附睾中,管腔液蛋白质比精子表面成分更持久。几种主要的管腔液成分(即95、76、21.5、19.5和16kd)在整个附睾中都存在。其他管腔液蛋白质的性质更短暂,例如,分子量为25kd的成分(E1至E6区域)或E4至E10区域中的180、62、37和32kd成分、E6至E10区域中的270、115和105kd蛋白质以及E7至E10区域中的360、145、125和62kd分子量成分。睾丸和附睾相应区域的内在表面成分与外源性管腔液蛋白质之间无法建立直接关系。这些结果表明,成熟附睾精子连续表面转化的复杂性比我们早期对睾丸和射出精子的研究预测的要大得多。显然,公羊精子在附睾头必须经历广泛的表面更新,然后成熟精子典型的表面蛋白质模式才会缓慢形成。