Suppr超能文献

关于自回归时间序列在用于诊断目的的多普勒信号建模中的应用。

On the use of autoregressive time series in the modelling of Doppler signals for diagnostic purposes.

作者信息

D'Alessio T, Di Giuliomaria C, Sacco R, Cavallaro A

出版信息

Clin Phys Physiol Meas. 1983 Nov;4(4):395-401. doi: 10.1088/0143-0815/4/4/004.

Abstract

Doppler instruments are widely used in the diagnosis of vascular diseases: however, the physician generally makes the diagnosis from personal experience, and by subjective evaluation of some quantities related to blood flow (e.g., maximum or mean frequency envelope, or zero-crossing density). In order to obtain more objective criteria, methods based on either spectrum analysis, or on Laplace or other orthogonal transforms have been proposed. An alternative approach to the diagnosis of vascular alterations is proposed, which relies on the modelling of flow signals by means of autoregressive time series. The parameters of the autoregressive model have been used for the detection of alterations. The basis of the method is discussed and some preliminary results are reported.

摘要

多普勒仪器广泛应用于血管疾病的诊断

然而,医生通常根据个人经验,并通过对一些与血流相关的量(例如,最大或平均频率包络,或过零密度)进行主观评估来做出诊断。为了获得更客观的标准,已经提出了基于频谱分析、拉普拉斯变换或其他正交变换的方法。本文提出了一种诊断血管改变的替代方法,该方法依靠自回归时间序列对血流信号进行建模。自回归模型的参数已用于检测血管改变。文中讨论了该方法的基础并报告了一些初步结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验