Suppr超能文献

Evaluation of the intramolecular stacking of the fluorosulfonylbenzoyl derivatives of 1,N6-ethenoadenosine, adenosine, and guanosine.

作者信息

Jacobson M A, Colman R F

出版信息

J Biol Chem. 1984 Feb 10;259(3):1454-60.

PMID:6693416
Abstract

The differences in conformation in solution of fluorosulfonylbenzoyl nucleosides were analyzed by fluorescence and proton nuclear magnetic resonance spectroscopy. The quantum yield of 5'-p-fluorosulfonylbenzoyl-1,N6-ethenoadenosine (5'-FSB epsilon A) in aqueous solution is low (ø = 0.01) as compared to that of its parent nucleoside, ethenoadenosine (ø = 0.54), and increases approximately 5-fold when measured in a series of solvents of decreasing dielectric constant. The quantum yield of 5'-p-sulfonylbenzoyl-1,N6-ethenoadenosine covalently bound to glutamate dehydrogenase and pyruvate kinase is also 0.01, suggesting that the analogue may exist in the same conformation when enzyme-bound as when free in solution. In D2O, the resonances of the purine ring protons on 5'-FSB epsilon A, 5'-p-fluorosulfonylbenzoyl adenosine (5'-FSBA), and 5'-p-fluorosulfonylbenzoyl guanosine (5'-FSBG) are shifted upfield by about 0.1-0.3 ppm relative to the corresponding protons of their parent nucleosides. The calculated difference in chemical shift (delta delta) decreases as the dielectric constant of the solvent decreases. The delta delta decreases with increasing temperature. These data indicate that 5'-FSB epsilon A, 5'-FSBA, and 5'-FSBG exist in aqueous solution in a conformation in which the purine ring is intramolecularly stacked with the benzoyl moiety. From the magnitude of change in delta delta for 5'-FSB epsilon A, 5'-FSBA, and 5'-FSBG as a function of solvent, it appears that the three analogues differ in their sensitivity to disruption of stacking. The solution conformation of these three fluorosulfonylbenzoyl nucleoside analogues may be an important determinant of their reaction with various enzymes and may explain differences among the analogues in their reaction with a single enzyme.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验