Hanson D C, Schumaker V N
J Immunol. 1984 Mar;132(3):1397-409.
We present a model for the formation and interconversion of the soluble complexes formed by reacting staphylococcal protein A (SpA) with rabbit immunoglobulin G (IgG) antibodies. The basic elements of the model are developed from reported hydrodynamic and electron microscopic studies of these complexes (see accompanying companion paper), together with established structural and binding properties of IgG and SpA. The model includes specific symmetry and binding requirements for IgG-SpA combination, and a steric constraint between neighboring IgG molecules. We discuss how such a constraint could influence the assembly and distribution of equilibrium complexes. After formulating a convenient symbolism for representing IgG-SpA complexes, the suggested model is used to construct plausible structures for the four predominant complexes observed in moderate SpA excess. Distributions of these stable complexes at different IgG:SpA ratios, together with LeChatelier's principle and a straightforward thermodynamic derivation, are used to predict likely arrangements of equilibrium structures. Also, a scale model of the unique IgG4-SpA2 complex formed in IgG excess is constructed from reported x-ray diffraction and amino acid sequence data. An intuitive thermodynamic argument is used to show that the suggested steric constraint could cause the rather unprecedented reversible transformation of the four 7 to 15S complexes into the unique 17S complex. A computer simulation is used to predict equilibrium concentrations of the various proposed complexes at different IgG:SpA ratios. In support of the suggested structures, the calculated thermodynamic distributions agree surprisingly well with those measured with the ultracentrifuge. We point out how the proposed arrangements of the complexes, and in particular the 17S complex, can account for many of their novel properties, such as antigen-induced conformational changes. Reported differences in complement activation and precipitate formation by SpA complexes formed with antibodies from various species are also discussed with regard to possible differences in structural arrangements of the complexes.
我们提出了一个模型,用于描述葡萄球菌蛋白A(SpA)与兔免疫球蛋白G(IgG)抗体反应形成的可溶性复合物的形成及相互转化。该模型的基本要素是根据已报道的这些复合物的流体动力学和电子显微镜研究(见随附的配套论文),以及IgG和SpA既定的结构和结合特性而建立的。该模型包括IgG - SpA结合的特定对称性和结合要求,以及相邻IgG分子之间的空间位阻约束。我们讨论了这种约束如何影响平衡复合物的组装和分布。在为表示IgG - SpA复合物制定了一种方便的符号表示法后,所提出的模型被用于构建在SpA适度过量时观察到的四种主要复合物的合理结构。这些稳定复合物在不同IgG:SpA比例下的分布,连同勒夏特列原理和一个直接的热力学推导,被用于预测平衡结构的可能排列。此外,根据已报道的X射线衍射和氨基酸序列数据构建了在IgG过量时形成的独特IgG4 - SpA2复合物的比例模型。通过一个直观的热力学论证表明,所提出的空间位阻约束可能导致四种7到15S复合物发生相当前所未有的可逆转化,形成独特的17S复合物。使用计算机模拟来预测不同IgG:SpA比例下各种提出的复合物的平衡浓度。为支持所提出的结构,计算得到的热力学分布与用超速离心机测量的结果惊人地吻合。我们指出复合物的所提出排列,特别是17S复合物,如何能够解释它们的许多新特性,例如抗原诱导的构象变化。还讨论了关于由来自不同物种的抗体形成的SpA复合物在补体激活和沉淀形成方面报道的差异,涉及复合物结构排列的可能差异。