Smith J B, Ash K O, Hentschel W M, Sprowell W L, Williams R R
Clin Chim Acta. 1984 Feb 28;137(2):169-77. doi: 10.1016/0009-8981(84)90177-3.
Both sodium countertransport and sodium-potassium cotransport are altered in erythrocytes from some hypertensive subjects and their relatives. Lithium can substitute for sodium in both of these transport mechanisms; they can then be monitored as sodium-lithium countertransport and lithium-potassium cotransport. Using erythrocytes loaded with lithium, we can determine both transport systems simultaneously by monitoring the rate of lithium efflux into three media: (1) NaCl, (2) MgCl2 and (3) MgCl2 with furosemide. The difference between the effluxes into NaCl and MgCl2 is the sodium-lithium countertransport; the difference between the effluxes into MgCl2 with and without the cotransport inhibitor furosemide is the lithium-potassium cotransport. At the intracellular Li concentrations used in these experiments, lithium-potassium cotransport is a linear function of the Li+ concentration and can be expressed by the equation for a first order reaction. The rate constant can be calculated by dividing the lithium-potassium cotransport by the intracellular lithium concentration and correlates well (r = 0.80, n = 30) with sodium-potassium cotransport measured by Dagher and Garay's method. The simultaneous measurement of countertransport and cotransport requires much less time, effort and material than measuring the two transports separately.
在一些高血压患者及其亲属的红细胞中,钠逆向转运和钠钾协同转运均发生了改变。锂可在这两种转运机制中替代钠;于是它们可分别作为钠锂逆向转运和锂钾协同转运进行监测。使用装载锂的红细胞,我们可以通过监测锂外流到三种介质中的速率同时测定这两种转运系统:(1)氯化钠,(2)氯化镁,(3)含有呋塞米的氯化镁。流入氯化钠和氯化镁中的外流速率之差即为钠锂逆向转运;流入含有和不含有协同转运抑制剂呋塞米的氯化镁中的外流速率之差即为锂钾协同转运。在这些实验中所使用的细胞内锂浓度下,锂钾协同转运是锂离子浓度的线性函数,并且可以用一级反应方程来表示。速率常数可以通过锂钾协同转运除以细胞内锂浓度来计算,并且与通过达盖尔和加雷方法测量的钠钾协同转运具有良好的相关性(r = 0.80,n = 30)。与分别测量这两种转运相比,同时测量逆向转运和协同转运所需的时间、精力和材料要少得多。