Suppr超能文献

Interactions between carbamyl phosphate synthase-I-mitochondrial aspartate aminotransferase and palmitoyl-CoA.

作者信息

Fahien L A, Kmiotek E H, Marshall M

出版信息

Arch Biochem Biophys. 1984 Apr;230(1):213-21. doi: 10.1016/0003-9861(84)90102-4.

Abstract

Carbamyl phosphate synthase-I and glutamate dehydrogenase both form a complex with mitochondrial aspartate aminotransferase. Instead of these two enzymes competing for the aminotransferase, carbamyl phosphate synthase-I enhances glutamate dehydrogenase-aminotransferase interaction. This suggests that a complex can be formed between all three enzymes. Since this complex is stable in the presence of substrates and modifiers of the three enzymes, it could conceivably convert NH+4 produced from aspartate into carbamyl phosphate. Furthermore, since carbamyl phosphate synthase-I is the predominant protein in liver mitochondria, it could play a major role in placing the aminotransferase and glutamate dehydrogenase in close proximity. Malate removes glutamate dehydrogenase from the tri-enzyme complex and thus could play a role in determining whether glutamate dehydrogenase interacts with carbamyl phosphate synthase-I or is available to participate in reactions with the Krebs cycle. Palmitoyl-CoA has a high affinity for both carbamyl phosphate synthase-I and glutamate dehydrogenase. ATP and malate which, respectively, decrease and enhance binding of palmitoyl-CoA to glutamate dehydrogenase, respectively decrease and enhance the ability of this enzyme to compete with carbamyl phosphate synthase-I for palmitoyl-CoA. Since carbamyl phosphate synthase-I is present in high levels in liver mitochondria and has a high affinity for palmitoyl-CoA, it could play a major role as a reservoir for palmitoyl-CoA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验