Suppr超能文献

Thermal behavior of cores of human serum triglyceride-rich lipoproteins: a study of induced circular dichroism of beta-carotene.

作者信息

Chen G C, Kane J P, Hamilton R L

出版信息

Biochemistry. 1984 Mar 13;23(6):1119-24. doi: 10.1021/bi00301a013.

Abstract

Induced circular dichroism (CD) of beta-carotene has been used to study the physical state in the cores of three classes of triglyceride-rich lipoproteins from human serum: intermediate-density lipoproteins (IDL) (1.006 less than d less than 1.019 g/mL) and subfractions of the d less than 1.006 g/mL lipoproteins of beta and pre-beta electrophoretic mobility. Effects on the physical state in the cores attributable to the ratio of triglycerides to cholesteryl esters and particle diameters were assessed by comparing the temperature-dependent CD spectra of beta-carotene with those of low-density lipoproteins (LDL). Lipoproteins were prepared from serum by sequential ultracentrifugation after the donors were given supplemental dietary beta-carotene (60 mg/day) for 2 weeks. The beta- and pre-beta-migrating d less than 1.006 g/mL lipoproteins were separated by starch block electrophoresis and were then individually separated into subfractions by agarose gel filtration chromatography. Between 7 and 30 degrees C, four subfractions of the beta-migrating d less than 1.006 g/mL lipoproteins and IDL exhibited reversible, temperature-dependent induced CD of beta-carotene, with contours similar to those of LDL but with smaller magnitudes and much broader transitions of the CD bands than those of LDL. In contrast, subfractions of the pre-beta-migrating d less than 1.006 g/mL lipoproteins showed no detectable induced CD of beta-carotene. These results show that the cores of triglyceride-rich lipoproteins can exist in some ordered state between 7 and 30 degrees C if they have a relatively low ratio of triglycerides to cholesteryl esters (mass ratio less than 1.6) and relatively small particle diameter (less than 60 nm).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验