Inoue M, Akerboom T P, Sies H, Kinne R, Thao T, Arias I M
J Biol Chem. 1984 Apr 25;259(8):4998-5002.
Transport of S-dinitrophenyl glutathione, a model compound of glutathione S-conjugates, was studied in isolated rat liver canalicular membrane vesicles by a rapid filtration technique. The membrane vesicles exhibited time-dependent uptake of [2-3H]glycine-glutathione conjugate into an osmotically sensitive intravesicular space. Inactivation of vesicle-associated gamma-glutamyltransferase by affinity labeling with L-(alpha-S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazole-acetic acid had no effect on the initial rate of transport. Chemical analysis revealed that the intact glutathione conjugate accounted for most vesicle-associated radioactivity, reflecting the low transferase activity in the liver and membrane vesicles. The initial rate of transport followed saturation kinetics with respect to conjugate concentrations; an apparent Km of 1.0 mM and Vmax of 1.7 nmol/mg of protein X 20 s were calculated. These results indicate that transport of the glutathione S-conjugate across the canalicular membranes is a carrier-mediated process. Sodium chloride in the transport medium could be replaced by KCl, LiCl, or choline chloride without any changes in transport activity. The rate of conjugate transport was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). The rate of conjugate uptake was enhanced by replacing KCl in the transport medium with K gluconate, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. These data indicate that conjugate transport is electrogenic and involves the transfer of negative charge. Transport of S-dinitrophenyl glutathione was inhibited by S-benzyl glutathione, oxidized glutathione, or reduced glutathione. This transport system in canalicular membranes may function in biliary secretion of glutathione S-conjugates of xenobiotics whose synthesis in hepatocytes requires glutathione S-transferases.
采用快速过滤技术,在分离的大鼠肝胆小管膜囊泡中研究了谷胱甘肽S-共轭物的模型化合物S-二硝基苯基谷胱甘肽的转运。膜囊泡表现出将[2-³H]甘氨酸-谷胱甘肽共轭物随时间摄取到对渗透压敏感的囊泡内空间中。用L-(α-S,5S)-α-氨基-3-氯-4,5-二氢-5-异恶唑乙酸进行亲和标记使囊泡相关的γ-谷氨酰转移酶失活,对初始转运速率没有影响。化学分析表明,完整的谷胱甘肽共轭物占大多数与囊泡相关的放射性,这反映了肝脏和膜囊泡中较低的转移酶活性。转运的初始速率遵循关于共轭物浓度的饱和动力学;计算得出表观Km为1.0 mM,Vmax为1.7 nmol/mg蛋白质×20 s。这些结果表明,谷胱甘肽S-共轭物跨胆小管膜的转运是一个载体介导的过程。转运介质中的氯化钠可以被氯化钾、氯化锂或氯化胆碱替代,而转运活性没有任何变化。缬氨霉素诱导的K⁺扩散电位(囊泡内为正)增强了共轭物的转运速率。用葡萄糖酸钾替代转运介质中的氯化钾(提供渗透性较小的阴离子)可增强共轭物摄取速率,而用硫氰酸钾替代氯化钾(提供渗透性较大的阴离子)则会降低摄取速率。这些数据表明共轭物转运是电生的,并且涉及负电荷的转移。S-二硝基苯基谷胱甘肽的转运受到S-苄基谷胱甘肽、氧化型谷胱甘肽或还原型谷胱甘肽的抑制。胆小管膜中的这种转运系统可能在肝细胞中合成需要谷胱甘肽S-转移酶的外源性物质的谷胱甘肽S-共轭物的胆汁分泌中起作用。