Hoylaerts M, Owen W G, Collen D
J Biol Chem. 1984 May 10;259(9):5670-7.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.
通过使用抗凝血酶III与高亲和力肝素(分子量=15,000)或平均具有16和12个单糖单元的肝素片段(分子量=4,300和3,200)的共价复合物,研究了肝素促进凝血酶与抗凝血酶III反应的机制。这些复合物以活性位点导向的不可逆抑制剂的方式抑制凝血酶:(公式:见原文)也就是说,酶的抑制率相对于复合物浓度是可饱和的。当肝素部分的分子量分别为15,000、4,300、3,200时,测定的Ki = (k-1 + k2)/k1值分别为7 nM、100 nM和6 μM,而k2(2 s-1)与肝素链长度无关。完整肝素的双分子速率常数k2/Ki为3×10(8) M-1 s-1,相应的二级速率常数k1为6.7×10(8) M-1 s-1,该值大于扩散控制双分子反应预期的值。分子量为4,300和3,200的肝素复合物的双分子速率常数分别为2×10(7) M-1 s-1和3×10(5) M-1 s-1。活性位点被阻断的凝血酶是共价抗凝血酶III-肝素复合物的拮抗剂:该效应是单相的,在4 nM拮抗剂时对完整肝素复合物的抑制作用达到半数最大,而对肝素片段复合物的作用较弱且不是单相的。我们得出结论,实际上所有高亲和力、高分子量肝素的活性都取决于凝血酶和抗凝血酶III与肝素的结合,并且肝素异常高的活性部分源于非特异性结合到肝素上的凝血酶在肝素链维度上向结合的抗凝血酶III扩散的能力。增加肝素的链长度会导致反应速率增加,这是因为溶液中凝血酶与肝素之间相互作用的概率更高。