Hyver C
J Theor Biol. 1984 Mar 21;107(2):203-9. doi: 10.1016/s0022-5193(84)80022-3.
An autonomous periodic behaviour may correspond to a local or global limit cycle. If the cycle is local, the mathematical analysis is fairly easy upon linearizing about a singular point, but there are few mathematical methods for the determination of global limiting cycles. A periodic motion has a priori a 50% chance of being global. This paper describes a method of predicting certain types of global limit cycles. The application of this procedure indicates that there are plenty of biochemical systems with stable singular points but nevertheless oscillatory.
一种自主周期性行为可能对应于局部或全局极限环。如果该环是局部的,那么在奇点附近进行线性化后,数学分析相当容易,但用于确定全局极限环的数学方法却很少。周期性运动先验地有50%的可能性是全局的。本文描述了一种预测某些类型全局极限环的方法。该程序的应用表明,存在大量具有稳定奇点但仍呈振荡性的生化系统。