Suppr超能文献

Age-dependent decrease of the passive Rb+ and K+ permeability of the nerve cell membranes in rat brain cortex as revealed by in vivo measurement of the Rb+ discrimination ratio.

作者信息

Gyenes M, Lustyik G, Nagy V, Jeney F, Nagy I

出版信息

Arch Gerontol Geriatr. 1984 May;3(1):11-31. doi: 10.1016/0167-4943(84)90012-8.

Abstract

Young, adult and old male CFY rats (2, 12 and 24 mth of age, respectively) were treated with a daily dose of 30 mg RbCl/100 g body weight, in form of aqueous solution injected intraperitoneally for 14 days. A considerable part of the intracellular K+-content of the body was replaced by Rb+ during this treatment. After cessation of the RbCl injections, a relative steady state came into being in each age group, called Rb+-release period. During this period Rb+ and K+ contents of the blood serum and the cisternal CSF were measured by atomic absorption spectrophotometry, and of the intracellular space of brain cortical cells by energy-dispersive X-ray microanalysis. Ultrastructural features of the brain cortex were also checked by transmission electron microscopy. For X-ray microanalysis, the L-line of Rb at 1.694 keV energy was used at 10 kV accelerating voltage in a scanning electron microscope equipped with an EDAX System F. Rb+ and K+ concentrations were obtained for the cellular dry mass and converted into wet concentrations on the basis of intracellular water contents known from former experiments. Rb+-replacement of K+ did not cause any ultrastructural alteration in the brain cortex. However, the Rb+ accumulation displayed a very significant age-dependent increase: at the beginning of release, adult and old rats had 32.6 and 44.7 mM Rb+ in their intracellular water as against the 8.6 mM found in the young group, and similar proportional difference persisted during 20 days of the release. Rb+ discrimination ratios (DR) calculated either for the blood or the CSF displayed very considerable age-dependent increase: the values of the adult and old groups were 191 and 242% of the young one, indicating that the passive Rb+ (and K+) permeability of the nerve cell membrane decreases throughout the life span of rats. These results give further support to the membrane hypothesis of aging.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验