Suppr超能文献

群体药代动力学参数估计的替代方法:与非线性混合效应模型的比较。

Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model.

作者信息

Steimer J L, Mallet A, Golmard J L, Boisvieux J F

出版信息

Drug Metab Rev. 1984;15(1-2):265-92. doi: 10.3109/03602538409015066.

Abstract

Individual pharmacokinetic parameters can be viewed as independent realizations of a random variable. The probability density function of the variable is assumed to be specified by its first two moments (mean vector and covariance matrix), and these moments then characterize the distribution of the parameters in the population. The following methods are presented for estimation of population characteristics from a set of pharmacokinetic measurements in a sample of subjects: The Global Two-Stage Approach (GTS) uses estimates (and their covariances) of individual parameters obtained after separate fitting of each individual's data. The Iterated Two-Stage Approach (ITS) makes the GTS procedure iterative, using refined bayesian estimates of individual parameters at each step. The Nonlinear Filtering Approach (NLF) also relies on individual parameter estimates produced by using an optimal filter on each subject's data. The three methods give exact results (maximum likelihood estimates), as does NONMEM (the Nonlinear Mixed-Effect Model Approach), when the individual pharmacokinetic model is linear with respect to the parameters and when the distributions of the pharmacokinetic parameters and of the measurement noise in the individual data are both multivariate normal. When the individual pharmacokinetic model is statistically nonlinear (the usual case), the methods differ with respect to: (1) their strategy for handling nonlinearity, (2) their ability to deal with any type of data (experimental and/or routine), and (3) their sensitivity to the amplitude of random effects. With regard to computational aspects, both the computer memory storage requirements and the amount of computation required for the GTS approach are much smaller than for the three other methods. Contrasting considerations as well as results of simulations suggest that GTS, ITS, and, in future, NLF may be valuable alternatives to NONMEM or modifications of it for estimation of population characteristics of pharmacokinetic parameters.

摘要

个体药代动力学参数可被视为一个随机变量的独立实现。假定该变量的概率密度函数由其前两个矩(均值向量和协方差矩阵)指定,这些矩进而刻画了总体中参数的分布。本文介绍了从一组受试者样本的药代动力学测量值中估计总体特征的以下方法:全局两阶段法(GTS)使用在分别拟合每个个体的数据后获得的个体参数估计值(及其协方差)。迭代两阶段法(ITS)使GTS程序具有迭代性,在每一步使用个体参数的精细贝叶斯估计值。非线性滤波法(NLF)同样依赖于通过对每个受试者的数据使用最优滤波器产生的个体参数估计值。当个体药代动力学模型相对于参数是线性的,并且个体数据中药代动力学参数和测量噪声的分布均为多元正态时,这三种方法以及非线性混合效应模型法(NONMEM)都能给出精确结果(最大似然估计)。当个体药代动力学模型在统计上是非线性的(通常情况)时,这些方法在以下方面存在差异:(1)处理非线性的策略,(2)处理任何类型数据(实验性和/或常规数据)的能力,以及(3)对随机效应幅度的敏感性。在计算方面,GTS方法的计算机内存存储需求和所需计算量都比其他三种方法小得多。对比性的考虑因素以及模拟结果表明,GTS、ITS以及未来的NLF可能是NONMEM或其改进方法在估计药代动力学参数总体特征方面有价值的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验