Suppr超能文献

水摄入的调节。

Regulation of water intake.

作者信息

Andersson B, Leksell L G, Rundgren M

出版信息

Annu Rev Nutr. 1982;2:73-89. doi: 10.1146/annurev.nu.02.070182.000445.

Abstract

Here we have reviewed mainly the cerebral regulation of water intake and its relationship with the regulation of the water-retaining antidiuretic hormone (ADH). Much new information of obvious interest has been gained by experiments in conscious animals, by studies in healthy humans, and by clinical investigations. Of particularly great value has been the development of a sensitive radioimmunoassay for determination of plasma ADH (59). The sketchy picture that emerges in light of this new information is as follows. The osmotic regulation of water intake and ADH secretion is exerted by juxtacerebroventricular sensors apparently mainly located on the anterior border of the third ventricle. These sensors may be accessible both to CSF-borne and blood-borne stimuli and inhibitors, and their activity seems to be correlated to the Na concentration of the ECF rather than to its tonicity. A less sensitive volume regulation of water intake and ADH secretion is effectuated by cardiovascular distention and pressure receptors monitoring the effective circulating blood volume, and in severe volume depletion states also by the renin-angiotensin system (RAS). Afferent impulses from the cardiovascular receptors exert a tonic inhibition of the ADH release by acting upon its final neuronal link (the cells of the supraoptic and paraventricular nuclei). Afferent inflow from these receptors also inhibits thirst to some extent, perhaps by preventing at some synaptic level information from cerebral "thirst" sensors from reaching other parts of the brain where the information is converted into a conscious urge to drink. Therefore, increased cardiovascular receptor activity becomes manifested as elevated osmotic thresholds for ADH liberation and thirst. Severe volume depletion may induce RAS hyperactivity to such an extent that generated angiotensin II stimulates the ADH release and water intake. Demonstrated cerebral Na/angiotensin interaction suggests that this may occur via an angiotensin-induced lowering of the stimulus threshold for the sensors involved in the osmotic control of water balance. Cerebral damage affecting the sensors responsible for the osmotic regulation of water intake and ADH release may result in hypo- or adipsia associated with latent diabetes insipidus, and is apparently the ultimate cause of "essential" hypernatremia. This fragmentary outline of the cerebral control of water intake is based to a considerable extent upon circumstantial evidence, and is for that reason speculative on many points.

摘要

在此,我们主要回顾了大脑对水摄入的调节及其与保水性抗利尿激素(ADH)调节的关系。通过对清醒动物的实验、对健康人的研究以及临床调查,已经获得了许多明显有趣的新信息。用于测定血浆ADH的灵敏放射免疫分析法(59)的发展具有特别重大的价值。根据这些新信息呈现出的大致情况如下。水摄入和ADH分泌的渗透调节是由明显主要位于第三脑室前缘的脑室旁传感器进行的。这些传感器可能既受到脑脊液传播的刺激和抑制剂的影响,也受到血液传播的刺激和抑制剂的影响,并且它们的活动似乎与细胞外液的钠浓度相关,而不是与它的张力相关。水摄入和ADH分泌的不太敏感的容量调节是由监测有效循环血容量的心血管扩张和压力感受器实现的,在严重容量耗竭状态下,肾素 - 血管紧张素系统(RAS)也参与其中。来自心血管感受器的传入冲动通过作用于ADH释放的最终神经元环节(视上核和室旁核的细胞)对ADH释放产生紧张性抑制。来自这些感受器的传入信息流在一定程度上也抑制口渴,可能是通过在某些突触水平阻止来自大脑“口渴”传感器的信息到达大脑的其他部位,在这些部位信息被转化为有意识的饮水冲动。因此,心血管感受器活动增加表现为ADH释放和口渴的渗透阈值升高。严重的容量耗竭可能会诱导RAS过度活跃,以至于产生的血管紧张素II刺激ADH释放和水摄入。已证实的大脑钠/血管紧张素相互作用表明,这可能是通过血管紧张素诱导参与水平衡渗透控制的传感器的刺激阈值降低而发生的。影响负责水摄入和ADH释放渗透调节的传感器的脑损伤可能导致与潜在尿崩症相关的低渗或无渴感,显然是“原发性”高钠血症的最终原因。这个关于大脑对水摄入控制的不完整概述在很大程度上基于间接证据,因此在许多方面具有推测性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验