Suppr超能文献

用于确定重型颅脑损伤预后的统计方法。

Statistical methods for determining prognosis in severe head injury.

作者信息

Stablein D M, Miller J D, Choi S C, Becker D P

出版信息

Neurosurgery. 1980 Mar;6(3):243-8.

PMID:6770283
Abstract

Determining the prognostic significance of clinical factors for patients with severe head injury can lead to an improved understanding of the pathophysiology of head injury and to improvement in therapy. A technique known as the sequential Bayes method has been used previously for the purpose of prognosis. The application of this method assumes that prognostic factors are statistically independent. It is now known that they are not. Violation of the assumption of independence may produce errors in determining prognosis. As an alternative technique for predicting the outcome of patients with severe head injury, a logistic regression model is proposed. A preliminary evaluation of the method using data from 115 patients with head injury shows the feasibility of using early data to predict outcome accurately and of being able to rank input variables in order of their prognostc significance.

摘要

确定严重颅脑损伤患者临床因素的预后意义,有助于加深对颅脑损伤病理生理学的理解,并改善治疗方法。一种称为序贯贝叶斯方法的技术此前已用于预后判断。该方法的应用假定预后因素在统计学上是独立的。但现在已知它们并非如此。违背独立性假设可能会在判断预后时产生错误。作为预测严重颅脑损伤患者预后的另一种技术,本文提出了一种逻辑回归模型。使用115例颅脑损伤患者的数据对该方法进行的初步评估表明,利用早期数据准确预测预后以及按预后意义对输入变量进行排序是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验