Soodak H, Iberall A
Am J Physiol. 1978 Jul;235(1):R3-17. doi: 10.1152/ajpregu.1978.235.1.R3.
We present a tutorial on the mechanisms of and connections among osmosis, diffusion, and convection. For simplicity, we consider only two-component nonelectrolyte solutions under isothermal conditions. Further, we confine our attention to laminar convection with application to the case of flow through narrow channels, as might occur in membranes containing pores or slits. The application of equilibrium and near-equilibrium thermodynamics to flow processes is just like considerations of mechanics with friction, or hydrodynamics. The description of flow processes of more than two atomistic components, either solutions or suspensions, is identical in the dilute limit to the description we give, except possibly when the curvature of the flow field (at the velocity profile) is significant. Flow fields, therefore, naturally divide into three regimes: 1) "one-dimensional" flow fields, e.g., solutions or suspensions in extended regions, whose velocity profile is macroscopically flat (compared to the atomistic curvature); 2) flow fields with significant curvature, e.g., Poiseuille or turbulent fields; and 3) high curvature fields, e.g., narrow flow channels.
我们提供了一篇关于渗透、扩散和对流的机制及其相互联系的教程。为简单起见,我们仅考虑等温条件下的双组分非电解质溶液。此外,我们将注意力局限于层流对流,并应用于通过狭窄通道的流动情况,这可能发生在含有孔隙或狭缝的膜中。将平衡和近平衡热力学应用于流动过程,类似于考虑有摩擦力的力学或流体动力学。对于包含两种以上原子组分的溶液或悬浮液的流动过程描述,在稀溶液极限下与我们给出的描述相同,除非流场(在速度分布方面)的曲率很大。因此,流场自然地分为三种状态:1)“一维”流场,例如在扩展区域中的溶液或悬浮液,其速度分布在宏观上是平坦的(与原子尺度的曲率相比);2)具有显著曲率的流场,例如泊肃叶流场或湍流场;3)高曲率场,例如狭窄的流动通道。