Suppr超能文献

乳酸链球菌和乳脂链球菌的半乳糖发酵:途径、产物及调控

Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.

作者信息

Thomas T D, Turner K W, Crow V L

出版信息

J Bacteriol. 1980 Nov;144(2):672-82. doi: 10.1128/jb.144.2.672-682.1980.

Abstract

All of the lactic streptococci examined except Streptococcus lactis ML8 fermented galactose to lactate, formate, acetate, and ethanol. The levels of pyruvate-formate lyase and lactate dehydrogenase were elevated and reduced, respectively, in galactose-grown cells compared with glucose- or lactose-grown cells. Reduced intracellular levels of both the lactate dehydrogenase activator (fructose, 1,6-diphosphate) and pyruvate-formate lyase inhibitors (triose phosphates) appeared to be the main factors involved in the diversion of lactate to the other products. S. lactis ML8 produced only lactate from galactose, apparently due to the maintenance of high intracellular levels of fructose 1,6-diphosphate and triose phosphates. The growth rates of all 10 Streptococcus cremoris strains examined decreased markedly with galactose concentrations below about 30 mM. This effect appeared to be correlated with uptake predominantly by the low-affinity galactose phosphotransferase system and initial metabolism via the D-tagatose 6-phosphate pathway. In contrast, with four of the five S. lactis strains examined, galactose uptake and initial metabolism involved more extensive use of the high-affinity galactose permease and Leloir pathway. With these strains the relative flux of galactose through the alternate pathways would depend on the exogenous galactose concentration.

摘要

除乳酸乳球菌ML8外,所有检测的乳酸链球菌都能将半乳糖发酵生成乳酸、甲酸、乙酸和乙醇。与在葡萄糖或乳糖培养基中生长的细胞相比,在半乳糖培养基中生长的细胞中,丙酮酸甲酸裂解酶和乳酸脱氢酶的水平分别升高和降低。乳酸脱氢酶激活剂(果糖-1,6-二磷酸)和丙酮酸甲酸裂解酶抑制剂(磷酸丙糖)的细胞内水平降低,似乎是乳酸转向其他产物的主要因素。乳酸乳球菌ML8利用半乳糖仅产生乳酸,这显然是由于细胞内果糖-1,6-二磷酸和磷酸丙糖水平较高。在半乳糖浓度低于约30 mM时,所有检测的10株乳脂链球菌菌株的生长速率均显著下降。这种效应似乎与主要通过低亲和力半乳糖磷酸转移酶系统的摄取以及通过D-塔格糖-6-磷酸途径的初始代谢有关。相比之下,在所检测的5株乳酸乳球菌菌株中的4株中,半乳糖的摄取和初始代谢更多地涉及高亲和力半乳糖通透酶和勒沃途径的广泛使用。对于这些菌株,半乳糖通过替代途径的相对通量将取决于外源半乳糖浓度。

相似文献

2
Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
Appl Environ Microbiol. 1984 Aug;48(2):332-7. doi: 10.1128/aem.48.2.332-337.1984.
5
Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
J Bacteriol. 1972 Dec;112(3):1335-45. doi: 10.1128/jb.112.3.1335-1345.1972.
10
Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
J Food Prot. 2014 Jul;77(7):1161-7. doi: 10.4315/0362-028X.JFP-13-475.

引用本文的文献

2
A catalog of ethanol-producing microbes in humans.
Future Microbiol. 2024;19(8):697-714. doi: 10.2217/fmb-2023-0250. Epub 2024 May 3.
4
A Novel Method for Long-Term Analysis of Lactic Acid and Ammonium Production in Non-growing Reveals Pre-culture and Strain Dependence.
Front Bioeng Biotechnol. 2020 Oct 8;8:580090. doi: 10.3389/fbioe.2020.580090. eCollection 2020.
5
Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in Streptococcus pneumoniae.
Mol Microbiol. 2020 Oct;114(4):536-552. doi: 10.1111/mmi.14557. Epub 2020 Jun 24.
6
Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures.
J Ind Microbiol Biotechnol. 2019 Jan;46(1):33-43. doi: 10.1007/s10295-018-2099-0. Epub 2018 Nov 9.
7
Comparative Transcriptomic Analysis of TH1436 and TH1477 Showing Different Capability in the Use of Galactose.
Front Microbiol. 2018 Aug 7;9:1765. doi: 10.3389/fmicb.2018.01765. eCollection 2018.
9
Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats.
Appl Environ Microbiol. 2016 Sep 16;82(19):5982-9. doi: 10.1128/AEM.01994-16. Print 2016 Oct 1.
10
Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected].
PLoS One. 2015 Mar 31;10(3):e0121042. doi: 10.1371/journal.pone.0121042. eCollection 2015.

本文引用的文献

1
Regulation of lactose fermentation in group N streptococci.
Appl Environ Microbiol. 1976 Oct;32(4):474-8. doi: 10.1128/aem.32.4.474-478.1976.
2
FORMATE-PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS. I. FACTOR REQUIREMENT FOR INTACT CELLS.
J Bacteriol. 1964 Jan;87(1):97-103. doi: 10.1128/jb.87.1.97-103.1964.
3
Galactose metabolism. I. Pathway of carbon in fermentation by Streptococcus faecalis.
J Bacteriol. 1962 Oct;84(4):793-6. doi: 10.1128/jb.84.4.793-796.1962.
4
The fermentation of galactose by Streptococcus pyogenes.
J Bacteriol. 1954 Jan;67(1):86-9. doi: 10.1128/jb.67.1.86-89.1954.
5
Galactose transport systems in Streptococcus lactis.
J Bacteriol. 1980 Nov;144(2):683-91. doi: 10.1128/jb.144.2.683-691.1980.
6
Synthesis of protein and ribonucleic acid by starved Streptococcus lactis in relation to survival.
J Gen Microbiol. 1969 Nov;58(3):363-9. doi: 10.1099/00221287-58-3-363.
8
Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
J Bacteriol. 1972 Dec;112(3):1335-45. doi: 10.1128/jb.112.3.1335-1345.1972.
9
Role of metabolic energy in the transport of -galactosides by Streptococcus lactis.
J Bacteriol. 1972 Feb;109(2):784-9. doi: 10.1128/jb.109.2.784-789.1972.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验