Morgan W T
Biochim Biophys Acta. 1978 Aug 21;535(2):319-33. doi: 10.1016/0005-2795(78)90098-3.
The 3.8 S alpha2-histidine-rich glycoprotein of human serum is composed of two non-identical subunits, each of which contains carbohydrate. The far ultraviolet circular dichroism spectrum of alpha2-histidine glycoprotein indicates that the protein has little alpha-helix but apparently appreciable amounts of beta-sheet and non-regular structures. alpha2-Histidine-rich glycoprotein binds heme with concomitant changes in the electrophoretic mobility of the protein, in the fluorescence of tryptophan residues, and in the absorption and optical activity of the heme chromophore. By fluorescence quenching, the stoichiometry of binding is 1 heme per alpha2-histidine-rich glycoprotein molecule with an apparent Kd near 1.5 muM; however, by changes in absorbance, the interaction of 9 to 10 additional heme molecules with the alpha protein can be detected. The absorption spectra of heme . alpha2-histidine-rich glycoprotein complexes resemble those of low-spin hemoproteins. The ellipticity induced in the heme chromophore on binding by alpha2-histidine-rich glycoprotein increases linearly up to about 10 hemes bound per mol protein. No change in the conformation of alpha2-histidine-rich glycoprotein was indicated by circular dichroism when one or two heme molecules are bound by the protein. alpha2-Histidine-rich glycoprotein does not effectively compete with human serum albumin for heme, suggesting that alpha2-histidine-rich glycoprotein has no major function in serum heme transport. Nonetheless, the binding of heme by alpha2-histidine-rich glycoprotein provides a means of studying the structure of this protein using the heme chromophore as a probe. alpha2-Histidine-rich glycoprotein also binds other organic molecules including bilirubin, diaquocobinamide, Cibacron blue F3GA and rose bengal, and certain divalent metals. It is of interest that copper, zinc, nickel, cadmium and cobalt effectively inhibit the binding of heme by alpha2-histidine-rich glycoprotein, whereas other divalent metals tested, including calcium, magnesium and manganese do not appreciably affect the heme-alpha2-histidine-rich glycoprotein interaction.
人血清中3.8S富含α2 - 组氨酸的糖蛋白由两个不同的亚基组成,每个亚基都含有碳水化合物。α2 - 组氨酸糖蛋白的远紫外圆二色光谱表明,该蛋白几乎没有α - 螺旋,但显然有相当数量的β - 折叠和不规则结构。富含α2 - 组氨酸的糖蛋白结合血红素时,蛋白质的电泳迁移率、色氨酸残基的荧光以及血红素发色团的吸收和光学活性会随之发生变化。通过荧光猝灭法,结合化学计量比为每个富含α2 - 组氨酸的糖蛋白分子结合1个血红素,表观解离常数Kd接近1.5 μM;然而,通过吸光度变化,可以检测到另外9至10个血红素分子与α蛋白的相互作用。血红素.富含α2 - 组氨酸的糖蛋白复合物的吸收光谱类似于低自旋血红素蛋白的光谱。富含α2 - 组氨酸的糖蛋白结合时,血红素发色团诱导的椭圆率在每摩尔蛋白结合约10个血红素之前呈线性增加。当该蛋白结合一两个血红素分子时,圆二色性表明富含α2 - 组氨酸的糖蛋白的构象没有变化。富含α2 - 组氨酸的糖蛋白不能有效地与人血清白蛋白竞争血红素,这表明富含α2 - 组氨酸的糖蛋白在血清血红素转运中没有主要功能。尽管如此,富含α2 - 组氨酸的糖蛋白与血红素的结合提供了一种利用血红素发色团作为探针来研究该蛋白结构的方法。富含α2 - 组氨酸的糖蛋白还能结合其他有机分子,包括胆红素、二水合钴胺酰胺、汽巴克隆蓝F3GA和孟加拉玫瑰红,以及某些二价金属。有趣的是,铜、锌、镍、镉和钴能有效抑制富含α2 - 组氨酸的糖蛋白与血红素的结合,而所测试的其他二价金属,包括钙、镁和锰,对血红素 - 富含α2 - 组氨酸的糖蛋白相互作用没有明显影响。