Mays C, Rosenberry T L
Biochemistry. 1981 May 12;20(10):2810-7. doi: 10.1021/bi00513a016.
Digestion of 18S and 14S acetylcholinesterase from eel electric organ with pepsin at 15 degrees C for 6 h results in extensive degradation of the catalytic subunits, but a major portion of the collagen-like tail structure associated with these enzyme forms resists degradation. The pepsin-resistant structures partially aggregate and can be isolated by gel exclusion chromatography on Sepharose CL-6B in buffered 1 M sodium chloride. The largest structure, denoted F3, has a molecular weight of 72 000 according to gel electrophoresis in sodium dodecyl sulfate and is composed of three 24 000 molecular weight polypeptides linked by intersubunit disulfide bonds. This structure is largely, but not completely, a collagen-like triple helix as indicated by a circular dichroism spectrum typical of triple-helical collagen and an amino acid composition characterized by 27% glycine, 5% hydroxyproline, and 5% hydroxylysine. Continued pepsin action results in degradation of the disulfide linkage region such that disulfide-linked dimers F2 and finally F1 monomers become the predominant forms in sodium dodecyl sulfate. Digested samples in which either F3 or F2 predominate have virtually identical circular dichroic spectra and amino acid compositions and generate similar diffuse 24 000 molecular weight polypeptides following disulfide reduction. Thus the intersubunit disulfide linkages in F3 must occur close to the end(s) of the fragment polypeptide chains. Pepsin conversion of F3 to F2 is particularly accelerated between 25 and 30 degrees C, suggesting that the triple-helical structure in the disulfide linkage region undergoes thermal destabilization in this temperature range. Digestion at 40 degrees C yields presumably triple-helical F1 structures devoid of disulfide linkages, although their degradation to small fragments can be detected at this temperature. The question of whether the three tail subunits that give rise to F1 polypeptides are identical remains open.
在15摄氏度下用胃蛋白酶处理鳗鱼电器官中的18S和14S乙酰胆碱酯酶6小时,会导致催化亚基大量降解,但与这些酶形式相关的大部分类胶原尾部结构能抵抗降解。胃蛋白酶抗性结构会部分聚集,可通过在含1M氯化钠缓冲液的Sepharose CL - 6B上进行凝胶排阻色谱分离。最大的结构,记为F3,根据十二烷基硫酸钠凝胶电泳,其分子量为72000,由三条分子量为24000的多肽通过亚基间二硫键连接而成。如典型三螺旋胶原的圆二色光谱以及以27%甘氨酸、5%羟脯氨酸和5%羟赖氨酸为特征的氨基酸组成所示,该结构在很大程度上但并非完全是类胶原三螺旋结构。持续的胃蛋白酶作用会导致二硫键连接区域降解,使得二硫键连接的二聚体F2以及最终的F1单体在十二烷基硫酸钠中成为主要形式。以F3或F2为主的消化样品具有几乎相同的圆二色光谱和氨基酸组成,并且在二硫键还原后会产生类似的弥散性24000分子量多肽。因此,F3中的亚基间二硫键必定位于片段多肽链的末端附近。F3向F2的胃蛋白酶转化在25至30摄氏度之间尤其加速,这表明二硫键连接区域的三螺旋结构在此温度范围内会发生热不稳定。在40摄氏度下消化会产生可能不含二硫键的三螺旋F1结构,尽管在此温度下可检测到它们降解为小片段。产生F1多肽的三个尾部亚基是否相同的问题仍然悬而未决。